# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapped TF.Text friendly to Tensorflow Lite conversion."""
import tensorflow as tf
import tensorflow_text as tf_text
class WhitespaceTokenizer(tf_text.Tokenizer):
"""TFLite friendly API for tensorflow_text.WhitspaceTokenizer.tokenize.
The strings are split on ICU defined whitespace characters. These
whitespace characters are dropped. See more details in
https://github.com/tensorflow/text/blob/master/docs/api_docs/python/text/WhitespaceTokenizer.md
Does not currently support tokenize_with_offsets().
"""
def __init__(self):
super(WhitespaceTokenizer, self).__init__()
self._tokenizer = tf_text.WhitespaceTokenizer()
def tokenize(self, input_tensor):
"""Tokenize input strings.
Args:
input_tensor: A `Tensor` of UTF-8 strings with rank 0, 1 or 2.
Returns:
A `RaggedTensor` of tokenized text. The returned shape is the shape of the
input tensor with an added ragged dimension for tokens of each string.
"""
@tf.function(experimental_implements='name: "tftext:WhitespaceTokenizer"')
def func(input_tensor):
return self._tokenizer.tokenize(input_tensor)
return func(input_tensor)
def ngrams(data,
width,
axis=-1,
reduction_type=None,
string_separator=' ',
name=None):
"""TFLite friendly API for tensorflow_text.ngrams.
Creates a tensor of n-grams based data, a token tensor. See more details in
https://github.com/tensorflow/text/blob/master/docs/api_docs/python/text/ngrams.md
Args:
data: The data to reduce. Must be convertible into a tf.Tensor or a
tf.RaggedTensor (in which case it will be deconstructed into its component
tf.Tensors).
width: The width of the ngram window. If there is not sufficient data to
fill out the ngram window, the resulting ngram will be empty.
axis: The axis to create ngrams along. Note that for string join reductions,
only axis '-1' is supported; for other reductions, any positive or
negative axis can be used. Should be a constant.
reduction_type: A member of the Reduction enum. Should be a constant.
Currently supports:
* `Reduction.STRING_JOIN`: Join strings in the window. Note that axis must
be -1 here.
string_separator: The separator string used for `Reduction.STRING_JOIN`.
Ignored otherwise. Must be a string constant, not a Tensor.
name: The op name.
Returns:
A tensor of ngrams. If `data` is a ragged tensor, this will be a ragged
tensor. Otherwise it will be a plain tensor.
"""
if reduction_type is not tf_text.Reduction.STRING_JOIN:
# TODO(b/162082752): Provide support for Reduction.SUM and Reduction.MEAN
raise tf.errors.InvalidArgumentError(
None, None, 'only Reduction.STRING_JOIN is currently supported')
if reduction_type is tf_text.Reduction.STRING_JOIN and axis != -1:
raise tf.errors.InvalidArgumentError(
None, None, 'For Reduction.STRING_JOIN, axis must be -1')
experimental_implements = [
'name: "tftext:Ngrams"',
'attr { key: "width" value { i: %d } }' % width,
'attr { key: "axis" value { i: %d } }' % axis,
'attr { key: "reduction_type" value { s: "STRING_JOIN" } }',
'attr { key: "string_separator" value { s: "%s" } }' % string_separator,
]
experimental_implements = ' '.join(experimental_implements)
if isinstance(data, tf.RaggedTensor):
# Since `data` can not be converted directly into a Tensor, we define
# ragged_func() which takes a deconstructed tf.RaggedTensor
# (one flat_values tensor and N row_splits tensors), pass it the
# deconstructed version of `data`, and then immediately reconstruct it
# within ragged_func().
@tf.function(experimental_implements=experimental_implements)
def ragged_func(values, *args):
ragged_tensor = tf.RaggedTensor.from_nested_row_splits(
flat_values=values, nested_row_splits=args)
return tf_text.ngrams(ragged_tensor, width, axis, reduction_type,
string_separator, name)
return ragged_func(data.flat_values, *data.nested_row_splits)
@tf.function(experimental_implements=experimental_implements)
def func(data):
return tf_text.ngrams(data, width, axis, reduction_type, string_separator,
name)
return func(data)