# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Writes metadata and label file to the audio classifier models."""
from typing import List, Optional
from tensorflow_lite_support.metadata.python.metadata_writers import metadata_info
from tensorflow_lite_support.metadata.python.metadata_writers import metadata_writer
from tensorflow_lite_support.metadata.python.metadata_writers import writer_utils
_MODEL_NAME = "AudioClassifier"
_MODEL_DESCRIPTION = (
"Identify the most prominent type in the audio clip from a known set of "
"categories.")
_INPUT_NAME = "audio_clip"
_INPUT_DESCRIPTION = "Input audio clip to be classified."
_OUTPUT_NAME = "probability"
_OUTPUT_DESCRIPTION = "Scores of the labels respectively."
class MetadataWriter(metadata_writer.MetadataWriter):
"""Writes metadata into an audio classifier."""
@classmethod
def create_from_metadata_info(
cls,
model_buffer: bytearray,
general_md: Optional[metadata_info.GeneralMd] = None,
input_md: Optional[metadata_info.InputAudioTensorMd] = None,
output_md: Optional[metadata_info.ClassificationTensorMd] = None):
"""Creates MetadataWriter based on general/input/output information.
Args:
model_buffer: valid buffer of the model file.
general_md: general information about the model. If not specified, default
general metadata will be generated.
input_md: input audio tensor informaton. If not specified, default input
metadata will be generated.
output_md: output classification tensor informaton. If not specified,
default output metadata will be generated.
Returns:
A MetadataWriter object.
"""
if output_md is None:
output_md = metadata_info.ClassificationTensorMd(
name=_OUTPUT_NAME, description=_OUTPUT_DESCRIPTION)
return cls.create_from_metadata_info_for_multihead(model_buffer, general_md,
input_md, [output_md])
@classmethod
def create_from_metadata_info_for_multihead(
cls,
model_buffer: bytearray,
general_md: Optional[metadata_info.GeneralMd] = None,
input_md: Optional[metadata_info.InputAudioTensorMd] = None,
output_md_list: Optional[List[
metadata_info.ClassificationTensorMd]] = None):
"""Creates a MetadataWriter instance for multihead models.
Args:
model_buffer: valid buffer of the model file.
general_md: general information about the model. If not specified, default
general metadata will be generated.
input_md: input audio tensor informaton. If not specified, default input
metadata will be generated.
output_md_list: information of each output tensor head. If not specified,
default metadata will be generated for each output tensor. If
`tensor_name` in each `ClassificationTensorMd` instance is not
specified, elements in `output_md_list` need to have one-to-one mapping
with the output tensors [1] in the TFLite model.
[1]:
https://github.com/tensorflow/tflite-support/blob/b2a509716a2d71dfff706468680a729cc1604cff/tensorflow_lite_support/metadata/metadata_schema.fbs#L605-L612
Returns:
A MetadataWriter object.
"""
if general_md is None:
general_md = metadata_info.GeneralMd(
name=_MODEL_NAME, description=_MODEL_DESCRIPTION)
if input_md is None:
input_md = metadata_info.InputAudioTensorMd(
name=_INPUT_NAME, description=_INPUT_DESCRIPTION)
associated_files = []
for md in output_md_list or []:
associated_files.extend(
[file.file_path for file in md.associated_files or []])
return super().create_from_metadata_info(
model_buffer=model_buffer,
general_md=general_md,
input_md=[input_md],
output_md=output_md_list,
associated_files=associated_files)
@classmethod
def create_for_inference(
cls,
model_buffer: bytearray,
sample_rate: int,
channels: int,
label_file_paths: List[str],
score_calibration_md: Optional[metadata_info.ScoreCalibrationMd] = None):
"""Creates mandatory metadata for TFLite Support inference.
The parameters required in this method are mandatory when using TFLite
Support features, such as Task library and Codegen tool (Android Studio ML
Binding). Other metadata fields will be set to default. If other fields need
to be filled, use the method `create_from_metadata_info` to edit them.
Args:
model_buffer: valid buffer of the model file.
sample_rate: the sample rate in Hz when the audio was captured.
channels: the channel count of the audio.
label_file_paths: paths to the label files [1] in the classification
tensor. Pass in an empty list if the model does not have any label file.
score_calibration_md: information of the score calibration operation [2]
in the classification tensor. Optional if the model does not use score
calibration.
[1]:
https://github.com/tensorflow/tflite-support/blob/b80289c4cd1224d0e1836c7654e82f070f9eefaa/tensorflow_lite_support/metadata/metadata_schema.fbs#L95
[2]:
https://github.com/tensorflow/tflite-support/blob/5e0cdf5460788c481f5cd18aab8728ec36cf9733/tensorflow_lite_support/metadata/metadata_schema.fbs#L434
Returns:
A MetadataWriter object.
"""
# To make Task Library working properly, sample_rate, channels need to be
# positive.
if sample_rate <= 0:
raise ValueError(
"sample_rate should be positive, but got {}.".format(sample_rate))
if channels <= 0:
raise ValueError(
"channels should be positive, but got {}.".format(channels))
input_md = metadata_info.InputAudioTensorMd(_INPUT_NAME, _INPUT_DESCRIPTION,
sample_rate, channels)
output_md = metadata_info.ClassificationTensorMd(
name=_OUTPUT_NAME,
description=_OUTPUT_DESCRIPTION,
label_files=[
metadata_info.LabelFileMd(file_path=file_path)
for file_path in label_file_paths
],
tensor_type=writer_utils.get_output_tensor_types(model_buffer)[0],
score_calibration_md=score_calibration_md)
return cls.create_from_metadata_info(
model_buffer, input_md=input_md, output_md=output_md)