{
"name": "AudioClassifier",
"description": "Identify the most prominent type in the audio clip from a known set of categories.",
"subgraph_metadata": [
{
"input_tensor_metadata": [
{
"name": "audio_clip",
"description": "Input audio clip to be classified.",
"content": {
"content_properties_type": "AudioProperties",
"content_properties": {
"sample_rate": 2,
"channels": 1
}
},
"stats": {
}
}
],
"output_tensor_metadata": [
{
"name": "probability",
"description": "Scores of the labels respectively.",
"content": {
"content_properties_type": "FeatureProperties",
"content_properties": {
}
},
"process_units": [
{
"options_type": "ScoreCalibrationOptions",
"options": {
"score_transformation": "LOG",
"default_score": 0.2
}
}
],
"stats": {
"max": [
1.0
],
"min": [
0.0
]
},
"associated_files": [
{
"name": "labelmap.txt",
"description": "Labels for categories that the model can recognize.",
"type": "TENSOR_AXIS_LABELS"
},
{
"name": "score_calibration.txt",
"description": "Contains sigmoid-based score calibration parameters. The main purposes of score calibration is to make scores across classes comparable, so that a common threshold can be used for all output classes.",
"type": "TENSOR_AXIS_SCORE_CALIBRATION"
}
]
}
]
}
]
}