chromium/third_party/tflite_support/src/tensorflow_lite_support/metadata/python/tests/testdata/object_detector/coco_ssd_mobilenet_v1_score_calibration.json

{
  "name": "ObjectDetector",
  "description": "Identify which of a known set of objects might be present and provide information about their positions within the given image or a video stream.",
  "subgraph_metadata": [
    {
      "input_tensor_metadata": [
        {
          "name": "image",
          "description": "Input image to be detected.",
          "content": {
            "content_properties_type": "ImageProperties",
            "content_properties": {
              "color_space": "RGB"
            }
          },
          "process_units": [
            {
              "options_type": "NormalizationOptions",
              "options": {
                "mean": [
                  127.5
                ],
                "std": [
                  127.5
                ]
              }
            }
          ],
          "stats": {
            "max": [
              255.0
            ],
            "min": [
              0.0
            ]
          }
        }
      ],
      "output_tensor_metadata": [
        {
          "name": "location",
          "description": "The locations of the detected boxes.",
          "content": {
            "content_properties_type": "BoundingBoxProperties",
            "content_properties": {
              "index": [
                1,
                0,
                3,
                2
              ],
              "type": "BOUNDARIES"
            },
            "range": {
              "min": 2,
              "max": 2
            }
          },
          "stats": {
          }
        },
        {
          "name": "category",
          "description": "The categories of the detected boxes.",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            },
            "range": {
              "min": 2,
              "max": 2
            }
          },
          "stats": {
          },
          "associated_files": [
            {
              "name": "labelmap.txt",
              "description": "Labels for categories that the model can recognize.",
              "type": "TENSOR_VALUE_LABELS"
            }
          ]
        },
        {
          "name": "score",
          "description": "The scores of the detected boxes.",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            },
            "range": {
              "min": 2,
              "max": 2
            }
          },
          "process_units": [
            {
              "options_type": "ScoreCalibrationOptions",
              "options": {
                "score_transformation": "INVERSE_LOGISTIC",
                "default_score": 0.2
              }
            }
          ],
          "stats": {
          },
          "associated_files": [
            {
              "name": "score_calibration.csv",
              "description": "Contains sigmoid-based score calibration parameters. The main purposes of score calibration is to make scores across classes comparable, so that a common threshold can be used for all output classes.",
              "type": "TENSOR_AXIS_SCORE_CALIBRATION"
            }
          ]
        },
        {
          "name": "number of detections",
          "description": "The number of the detected boxes.",
          "content": {
            "content_properties_type": "FeatureProperties",
            "content_properties": {
            }
          },
          "stats": {
          }
        }
      ],
      "output_tensor_groups": [
        {
          "name": "detection_result",
          "tensor_names": [
            "location",
            "category",
            "score"
          ]
        }
      ]
    }
  ]
}