# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Segmentations protobuf."""
import dataclasses
from typing import Any, Tuple, List, Optional
import numpy as np
from tensorflow_lite_support.python.task.core.optional_dependencies import doc_controls
# Using the proto in vision.proto here instead of processor.proto to match with
# the C++ layer. It's to avoid converting the large confidence masks or category
# mask from the proto type defined in vision.proto to processor.proto. For other
# tasks, the proto in processor.proto is always used in the Python layer and
# vision.proto <-> processor.proto's proto conversion happens in the C++ layer
# as those conversions of small protobuf objects are trivial.
from tensorflow_lite_support.cc.task.vision.proto import segmentations_pb2
_SegmentationProto = segmentations_pb2.Segmentation
_ConfidenceMaskProto = segmentations_pb2.Segmentation.ConfidenceMask
_ColoredLabelProto = segmentations_pb2.Segmentation.ColoredLabel
_SegmentationResultProto = segmentations_pb2.SegmentationResult
@dataclasses.dataclass
class ConfidenceMask:
"""2D-array representing the confidence mask in row major order.
For each pixel, the value indicates the prediction confidence usually
in the [0, 1] range where higher values represent a stronger confidence.
Ultimately this is model specific, and other range of values might be used.
Attributes:
value: A NumPy 2D-array indicating the prediction confidence values usually
in the range [0, 1].
"""
value: np.ndarray
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _ConfidenceMaskProto:
"""Generates a protobuf object to pass to the C++ layer."""
return _ConfidenceMaskProto(value=self.value.flatten())
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(cls, pb2_obj: _ConfidenceMaskProto, height: int,
width: int) -> "ConfidenceMask":
"""Creates a `ConfidenceMask` object from the given protobuf and size."""
return ConfidenceMask(value=np.array(pb2_obj.value).reshape(height, width))
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, ConfidenceMask):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class ColoredLabel:
"""Defines a label associated with an RGB color, for display purposes.
Attributes:
color: The RGB color components for the label, in the [0, 255] range.
category_name: The class name, as provided in the label map packed in the
TFLite ModelMetadata.
display_name: The display name, as provided in the label map (if available)
packed in the TFLite Model Metadata .
"""
color: Tuple[int, int, int]
category_name: str
display_name: str
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _ColoredLabelProto:
"""Generates a protobuf object to pass to the C++ layer."""
r, g, b = self.color
return _ColoredLabelProto(
r=r,
g=g,
b=b,
class_name=self.category_name,
display_name=self.display_name)
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(cls, pb2_obj: _ColoredLabelProto) -> "ColoredLabel":
"""Creates a `ColoredLabel` object from the given protobuf object."""
return ColoredLabel(
color=(pb2_obj.r, pb2_obj.g, pb2_obj.b),
category_name=pb2_obj.class_name,
display_name=pb2_obj.display_name)
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, ColoredLabel):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class Segmentation:
"""Represents one Segmentation object in the image segmenter's results.
Attributes:
height: The height of the mask. This is an intrinsic parameter of the model
being used, and does not depend on the input image dimensions.
width: The width of the mask. This is an intrinsic parameter of the model
being used, and does not depend on the input image dimensions.
colored_labels: A list of `ColoredLabel` objects.
category_mask: A NumPy 2D-array of the category mask.
confidence_masks: A list of `ConfidenceMask` objects.
"""
height: int
width: int
colored_labels: List[ColoredLabel]
category_mask: Optional[np.ndarray] = None
confidence_masks: Optional[List[ConfidenceMask]] = None
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _SegmentationProto:
"""Generates a protobuf object to pass to the C++ layer."""
if self.category_mask is not None:
return _SegmentationProto(
height=self.height,
width=self.width,
category_mask=bytes(self.category_mask),
colored_labels=[
colored_label.to_pb2() for colored_label in self.colored_labels
])
elif self.confidence_masks is not None:
segmentation_proto = _SegmentationProto()
segmentation_proto.height = self.height
segmentation_proto.width = self.width
segmentation_proto.confidence_masks.confidence_mask.extend([
confidence_mask.to_pb2() for confidence_mask in self.confidence_masks
])
segmentation_proto.colored_labels.extend(
[colored_label.to_pb2() for colored_label in self.colored_labels])
return segmentation_proto
else:
raise ValueError("Either category_mask or confidence_masks must be set.")
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(cls, pb2_obj: _SegmentationProto) -> "Segmentation":
"""Creates a `Segmentation` object from the given protobuf object."""
if pb2_obj.category_mask:
return Segmentation(
height=pb2_obj.height,
width=pb2_obj.width,
category_mask=np.array(bytearray(pb2_obj.category_mask)).reshape(
pb2_obj.height, pb2_obj.width),
colored_labels=[
ColoredLabel.create_from_pb2(colored_label)
for colored_label in pb2_obj.colored_labels
])
elif pb2_obj.confidence_masks.confidence_mask:
confidence_masks = [
ConfidenceMask.create_from_pb2(mask, pb2_obj.height, pb2_obj.width)
for mask in pb2_obj.confidence_masks.confidence_mask
]
return Segmentation(
height=pb2_obj.height,
width=pb2_obj.width,
confidence_masks=confidence_masks,
colored_labels=[
ColoredLabel.create_from_pb2(colored_label)
for colored_label in pb2_obj.colored_labels
])
else:
raise ValueError("Either category_mask or confidence_masks must be set.")
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, Segmentation):
return False
return self.to_pb2().__eq__(other.to_pb2())
@dataclasses.dataclass
class SegmentationResult:
"""Results of performing image segmentation.
Note that at the time, a single `Segmentation` element is expected to be
returned; the field is made repeated for later extension to e.g. instance
segmentation models, which may return one segmentation per object.
Attributes:
segmentations: A list of `Segmentation` objects.
"""
segmentations: List[Segmentation]
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _SegmentationResultProto:
"""Generates a protobuf object to pass to the C++ layer."""
return _SegmentationResultProto(segmentation=[
segmentation.to_pb2() for segmentation in self.segmentations
])
@classmethod
@doc_controls.do_not_generate_docs
def create_from_pb2(
cls, pb2_obj: _SegmentationResultProto) -> "SegmentationResult":
"""Creates a `SegmentationResult` object from the given protobuf object."""
return SegmentationResult(segmentations=[
Segmentation.create_from_pb2(segmentation)
for segmentation in pb2_obj.segmentation
])
def __eq__(self, other: Any) -> bool:
"""Checks if this object is equal to the given object.
Args:
other: The object to be compared with.
Returns:
True if the objects are equal.
"""
if not isinstance(other, SegmentationResult):
return False
return self.to_pb2().__eq__(other.to_pb2())