# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NL Classifier task."""
import dataclasses
from tensorflow_lite_support.python.task.core import base_options as base_options_module
from tensorflow_lite_support.python.task.processor.proto import classification_options_pb2
from tensorflow_lite_support.python.task.processor.proto import classifications_pb2
from tensorflow_lite_support.python.task.text.pybinds import _pywrap_nl_classifier
_CppNLClassifier = _pywrap_nl_classifier.NLClassifier
_BaseOptions = base_options_module.BaseOptions
_ClassificationOptions = classification_options_pb2.ClassificationOptions
_ClassificationResult = classifications_pb2.ClassificationResult
@dataclasses.dataclass
class NLClassifierOptions:
"""Options for the NL classifier task.
Attributes:
base_options: Base options for the NL classifier task.
"""
base_options: _BaseOptions
class NLClassifier(object):
"""Class that performs NL classification on text."""
def __init__(self, options: NLClassifierOptions,
cpp_classifier: _CppNLClassifier) -> None:
"""Initializes the `NLClassifier` object."""
# Creates the object of C++ NLClassifier class.
self._options = options
self._classifier = cpp_classifier
@classmethod
def create_from_file(cls, file_path: str) -> "NLClassifier":
"""Creates the `NLClassifier` object from a TensorFlow Lite model.
Args:
file_path: Path to the model.
Returns:
`NLClassifier` object that's created from the model file.
Raises:
ValueError: If failed to create `NLClassifier` object from the provided
file such as invalid file.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(file_name=file_path)
options = NLClassifierOptions(base_options=base_options)
return cls.create_from_options(options)
@classmethod
def create_from_options(cls, options: NLClassifierOptions) -> "NLClassifier":
"""Creates the `NLClassifier` object from NL classifier options.
Args:
options: Options for the NL classifier task.
Returns:
`NLClassifier` object that's created from `options`.
Raises:
ValueError: If failed to create `NLClassifier` object from
`NLClassifierOptions` such as missing the model or if any of the
classification options is invalid.
RuntimeError: If other types of error occurred.
"""
classifier = _CppNLClassifier.create_from_options(
options.base_options.to_pb2())
return cls(options, classifier)
def classify(self, text: str) -> _ClassificationResult:
"""Performs actual NL classification on the provided text.
Args:
text: the input text, used to extract the feature vectors.
Returns:
The classification result.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If failed to perform the classification.
"""
classification_result = self._classifier.classify(text)
return _ClassificationResult.create_from_pb2(classification_result)
@property
def options(self) -> NLClassifierOptions:
return self._options