# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Text embedder task."""
import dataclasses
from tensorflow_lite_support.python.task.core import base_options as base_options_module
from tensorflow_lite_support.python.task.processor.proto import embedding_options_pb2
from tensorflow_lite_support.python.task.processor.proto import embedding_pb2
from tensorflow_lite_support.python.task.text.pybinds import _pywrap_text_embedder
_CppTextEmbedder = _pywrap_text_embedder.TextEmbedder
_BaseOptions = base_options_module.BaseOptions
_EmbeddingOptions = embedding_options_pb2.EmbeddingOptions
@dataclasses.dataclass
class TextEmbedderOptions:
"""Options for the text embedder task.
Attributes:
base_options: Base options for the text embedder task.
embedding_options: Embedding options for the text embedder task.
"""
base_options: _BaseOptions
embedding_options: _EmbeddingOptions = dataclasses.field(
default_factory=_EmbeddingOptions
)
class TextEmbedder(object):
"""Class that performs dense feature vector extraction on text."""
def __init__(self, options: TextEmbedderOptions,
cpp_embedder: _CppTextEmbedder) -> None:
"""Initializes the `TextEmbedder` object."""
# Creates the object of C++ TextEmbedder class.
self._options = options
self._embedder = cpp_embedder
@classmethod
def create_from_file(cls, file_path: str) -> "TextEmbedder":
"""Creates the `TextEmbedder` object from a TensorFlow Lite model.
Args:
file_path: Path to the model.
Returns:
`TextEmbedder` object that's created from the model file.
Raises:
ValueError: If failed to create `TextEmbedder` object from the provided
file such as invalid file.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(file_name=file_path)
options = TextEmbedderOptions(base_options=base_options)
return cls.create_from_options(options)
@classmethod
def create_from_options(cls, options: TextEmbedderOptions) -> "TextEmbedder":
"""Creates the `TextEmbedder` object from text embedder options.
Args:
options: Options for the text embedder task.
Returns:
`TextEmbedder` object that's created from `options`.
Raises:
ValueError: If failed to create `TextEmbedder` object from
`TextEmbedderOptions` such as missing the model.
RuntimeError: If other types of error occurred.
"""
embedder = _CppTextEmbedder.create_from_options(
options.base_options.to_pb2(), options.embedding_options.to_pb2())
return cls(options, embedder)
def embed(self, text: str) -> embedding_pb2.EmbeddingResult:
"""Performs actual feature vector extraction on the provided text.
Args:
text: the input text, used to extract the feature vectors.
Returns:
embedding result.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If failed to calculate the embedding vector.
"""
embedding_result = self._embedder.embed(text)
return embedding_pb2.EmbeddingResult.create_from_pb2(embedding_result)
def cosine_similarity(self, u: embedding_pb2.FeatureVector,
v: embedding_pb2.FeatureVector) -> float:
"""Computes cosine similarity [1] between two feature vectors."""
return self._embedder.cosine_similarity(u.to_pb2(), v.to_pb2())
def get_embedding_dimension(self, output_index: int) -> int:
"""Gets the dimensionality of the embedding output.
Args:
output_index: The output index of output layer.
Returns:
Dimensionality of the embedding output by the output_index'th output
layer. Returns -1 if `output_index` is out of bounds.
"""
return self._embedder.get_embedding_dimension(output_index)
@property
def number_of_output_layers(self) -> int:
"""Gets the number of output layers of the model."""
return self._embedder.get_number_of_output_layers()
@property
def options(self) -> TextEmbedderOptions:
return self._options