/* chunkcopy.h -- fast chunk copy and set operations * Copyright (C) 2017 ARM, Inc. * Copyright 2017 The Chromium Authors * Use of this source code is governed by a BSD-style license that can be * found in the Chromium source repository LICENSE file. */ #ifndef CHUNKCOPY_H #define CHUNKCOPY_H #include <stdint.h> #include "zutil.h" #define Z_STATIC_ASSERT … #if __STDC_VERSION__ >= 199901L #define Z_RESTRICT … #else #define Z_RESTRICT #endif #if defined(__clang__) || defined(__GNUC__) || defined(__llvm__) #define Z_BUILTIN_MEMCPY … #define Z_BUILTIN_MEMSET … #else #define Z_BUILTIN_MEMCPY … #define Z_BUILTIN_MEMSET … #endif #if defined(INFLATE_CHUNK_SIMD_NEON) #include <arm_neon.h> typedef uint8x16_t z_vec128i_t; #elif defined(INFLATE_CHUNK_SIMD_SSE2) #include <emmintrin.h> z_vec128i_t; #elif defined(INFLATE_CHUNK_GENERIC) typedef struct { uint8_t x[16]; } z_vec128i_t; #else #error chunkcopy.h inflate chunk SIMD is not defined for your build target #endif /* * Suppress MSan errors about copying uninitialized bytes (crbug.com/1376033). */ #define Z_DISABLE_MSAN #if defined(__has_feature) #if __has_feature(memory_sanitizer) #undef Z_DISABLE_MSAN #define Z_DISABLE_MSAN … #endif #endif /* * chunk copy type: the z_vec128i_t type size should be exactly 128-bits * and equal to CHUNKCOPY_CHUNK_SIZE. */ #define CHUNKCOPY_CHUNK_SIZE … Z_STATIC_ASSERT; /* * Ask the compiler to perform a wide, unaligned load with a machine * instruction appropriate for the z_vec128i_t type. */ static inline z_vec128i_t loadchunk( const unsigned char FAR* s) Z_DISABLE_MSAN { … } /* * Ask the compiler to perform a wide, unaligned store with a machine * instruction appropriate for the z_vec128i_t type. */ static inline void storechunk( unsigned char FAR* d, const z_vec128i_t v) { … } /* * Perform a memcpy-like operation, assuming that length is non-zero and that * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if * the length is shorter than this. * * It also guarantees that it will properly unroll the data if the distance * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on * in chunkcopy_relaxed(). * * Aside from better memory bus utilisation, this means that short copies * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop * without iteration, which will hopefully make the branch prediction more * reliable. */ static inline unsigned char FAR* chunkcopy_core( unsigned char FAR* out, const unsigned char FAR* from, unsigned len) Z_DISABLE_MSAN { … } /* * Like chunkcopy_core(), but avoid writing beyond of legal output. * * Accepts an additional pointer to the end of safe output. A generic safe * copy would use (out + len), but it's normally the case that the end of the * output buffer is beyond the end of the current copy, and this can still be * exploited. */ static inline unsigned char FAR* chunkcopy_core_safe( unsigned char FAR* out, const unsigned char FAR* from, unsigned len, unsigned char FAR* limit) { … } /* * Perform short copies until distance can be rewritten as being at least * CHUNKCOPY_CHUNK_SIZE. * * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE * bytes of output even if the copy is shorter than this. This assumption * holds within zlib inflate_fast(), which starts every iteration with at * least 258 bytes of output space available (258 being the maximum length * output from a single token; see inffast.c). */ static inline unsigned char FAR* chunkunroll_relaxed( unsigned char FAR* out, unsigned FAR* dist, unsigned FAR* len) Z_DISABLE_MSAN { … } #if defined(INFLATE_CHUNK_SIMD_NEON) /* * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in * every 64-bit component of the 128-bit result (64-bit int splat). */ static inline z_vec128i_t v_load64_dup(const void* src) { return vcombine_u8(vld1_u8(src), vld1_u8(src)); } /* * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in * every 32-bit component of the 128-bit result (32-bit int splat). */ static inline z_vec128i_t v_load32_dup(const void* src) { int32_t i32; Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32)); return vreinterpretq_u8_s32(vdupq_n_s32(i32)); } /* * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in * every 16-bit component of the 128-bit result (16-bit int splat). */ static inline z_vec128i_t v_load16_dup(const void* src) { int16_t i16; Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16)); return vreinterpretq_u8_s16(vdupq_n_s16(i16)); } /* * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit * component of the 128-bit result (8-bit int splat). */ static inline z_vec128i_t v_load8_dup(const void* src) { return vld1q_dup_u8((const uint8_t*)src); } /* * v_store_128(): store the 128-bit vec in a memory destination (that might * not be 16-byte aligned) void* out. */ static inline void v_store_128(void* out, const z_vec128i_t vec) { vst1q_u8(out, vec); } #elif defined(INFLATE_CHUNK_SIMD_SSE2) /* * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in * every 64-bit component of the 128-bit result (64-bit int splat). */ static inline z_vec128i_t v_load64_dup(const void* src) { … } /* * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in * every 32-bit component of the 128-bit result (32-bit int splat). */ static inline z_vec128i_t v_load32_dup(const void* src) { … } /* * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in * every 16-bit component of the 128-bit result (16-bit int splat). */ static inline z_vec128i_t v_load16_dup(const void* src) { … } /* * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit * component of the 128-bit result (8-bit int splat). */ static inline z_vec128i_t v_load8_dup(const void* src) { … } /* * v_store_128(): store the 128-bit vec in a memory destination (that might * not be 16-byte aligned) void* out. */ static inline void v_store_128(void* out, const z_vec128i_t vec) { … } #elif defined(INFLATE_CHUNK_GENERIC) /* * Default implementations for chunk-copy functions rely on memcpy() being * inlined by the compiler for best performance. This is most likely to work * as expected when the length argument is constant (as is the case here) and * the target supports unaligned loads and stores. Since that's not always a * safe assumption, this may need extra compiler arguments such as * `-mno-strict-align` or `-munaligned-access`, or the availability of * extensions like SIMD. */ /* * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in * every 64-bit component of the 128-bit result (64-bit int splat). */ static inline z_vec128i_t v_load64_dup(const void* src) { int64_t in; Z_BUILTIN_MEMCPY(&in, src, sizeof(in)); z_vec128i_t out; for (int i = 0; i < sizeof(out); i += sizeof(in)) { Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in)); } return out; } /* * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in * every 32-bit component of the 128-bit result (32-bit int splat). */ static inline z_vec128i_t v_load32_dup(const void* src) { int32_t in; Z_BUILTIN_MEMCPY(&in, src, sizeof(in)); z_vec128i_t out; for (int i = 0; i < sizeof(out); i += sizeof(in)) { Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in)); } return out; } /* * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in * every 16-bit component of the 128-bit result (16-bit int splat). */ static inline z_vec128i_t v_load16_dup(const void* src) { int16_t in; Z_BUILTIN_MEMCPY(&in, src, sizeof(in)); z_vec128i_t out; for (int i = 0; i < sizeof(out); i += sizeof(in)) { Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in)); } return out; } /* * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit * component of the 128-bit result (8-bit int splat). */ static inline z_vec128i_t v_load8_dup(const void* src) { int8_t in = *(const uint8_t*)src; z_vec128i_t out; Z_BUILTIN_MEMSET(&out, in, sizeof(out)); return out; } /* * v_store_128(): store the 128-bit vec in a memory destination (that might * not be 16-byte aligned) void* out. */ static inline void v_store_128(void* out, const z_vec128i_t vec) { Z_BUILTIN_MEMCPY(out, &vec, sizeof(vec)); } #endif /* * Perform an overlapping copy which behaves as a memset() operation, but * supporting periods other than one, and assume that length is non-zero and * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output * even if the length is shorter than this. */ static inline unsigned char FAR* chunkset_core( unsigned char FAR* out, unsigned period, unsigned len) { … } /* * Perform a memcpy-like operation, but assume that length is non-zero and that * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if * the length is shorter than this. * * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour * of overlapping buffers, regardless of the distance between the pointers. * This is reflected in the `restrict`-qualified pointers, allowing the * compiler to re-order loads and stores. */ static inline unsigned char FAR* chunkcopy_relaxed( unsigned char FAR* Z_RESTRICT out, const unsigned char FAR* Z_RESTRICT from, unsigned len) { … } /* * Like chunkcopy_relaxed(), but avoid writing beyond of legal output. * * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the * behaviour of overlapping buffers, regardless of the distance between the * pointers. This is reflected in the `restrict`-qualified pointers, allowing * the compiler to re-order loads and stores. * * Accepts an additional pointer to the end of safe output. A generic safe * copy would use (out + len), but it's normally the case that the end of the * output buffer is beyond the end of the current copy, and this can still be * exploited. */ static inline unsigned char FAR* chunkcopy_safe( unsigned char FAR* out, const unsigned char FAR* Z_RESTRICT from, unsigned len, unsigned char FAR* limit) { … } /* * Perform chunky copy within the same buffer, where the source and destination * may potentially overlap. * * Assumes that len > 0 on entry, and that it's safe to write at least * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output. */ static inline unsigned char FAR* chunkcopy_lapped_relaxed( unsigned char FAR* out, unsigned dist, unsigned len) { … } /* * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal * output. * * Accepts an additional pointer to the end of safe output. A generic safe * copy would use (out + len), but it's normally the case that the end of the * output buffer is beyond the end of the current copy, and this can still be * exploited. */ static inline unsigned char FAR* chunkcopy_lapped_safe( unsigned char FAR* out, unsigned dist, unsigned len, unsigned char FAR* limit) { … } /* TODO(cavalcanti): see crbug.com/1110083. */ static inline unsigned char FAR* chunkcopy_safe_ugly(unsigned char FAR* out, unsigned dist, unsigned len, unsigned char FAR* limit) { … } /* * The chunk-copy code above deals with writing the decoded DEFLATE data to * the output with SIMD methods to increase decode speed. Reading the input * to the DEFLATE decoder with a wide, SIMD method can also increase decode * speed. This option is supported on little endian machines, and reads the * input data in 64-bit (8 byte) chunks. */ #ifdef INFLATE_CHUNK_READ_64LE /* * Buffer the input in a uint64_t (8 bytes) in the wide input reading case. */ inflate_holder_t; /* * Ask the compiler to perform a wide, unaligned load of a uint64_t using a * machine instruction appropriate for the uint64_t type. */ static inline inflate_holder_t read64le(const unsigned char FAR *in) { … } #else /* * Otherwise, buffer the input bits using zlib's default input buffer type. */ typedef unsigned long inflate_holder_t; #endif /* INFLATE_CHUNK_READ_64LE */ #undef Z_STATIC_ASSERT #undef Z_RESTRICT #undef Z_BUILTIN_MEMCPY #undef Z_DISABLE_MSAN #endif /* CHUNKCOPY_H */