chromium/tools/clang/plugins/FindBadConstructsConsumer.cpp

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "FindBadConstructsConsumer.h"

#include "Util.h"
#include "clang/AST/Attr.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Lex/Lexer.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;

namespace chrome_checker {

namespace {

// A more efficient alternative to NamedDecl::getQualifiedNameAsString():
// `hasName(decl, "foo", "Bar") iff
// `decl->getQualifiedNameAsString() == "foo::Bar".
bool hasName(const TagDecl* decl,
             StringRef namespace_name,
             StringRef decl_name) {
  if (decl->getName() == decl_name) {
    auto* nd = clang::dyn_cast<clang::NamespaceDecl>(decl->getParent());
    while (nd && nd->isInline()) {
      nd = clang::dyn_cast<clang::NamespaceDecl>(nd->getParent());
    }
    return nd && nd->getParent()->getRedeclContext()->isTranslationUnit() &&
           nd->getName() == namespace_name;
  }
  return false;
}

// Returns the underlying Type for |type| by expanding typedefs and removing
// any namespace qualifiers. This is similar to desugaring, except that for
// ElaboratedTypes, desugar will unwrap too much.
const Type* UnwrapType(const Type* type) {
  if (const ElaboratedType* elaborated = dyn_cast<ElaboratedType>(type)) {
    return UnwrapType(elaborated->getNamedType().getTypePtr());
  }
  if (const TypedefType* typedefed = dyn_cast<TypedefType>(type)) {
    return UnwrapType(typedefed->desugar().getTypePtr());
  }
  return type;
}

bool InTestingNamespace(const Decl* record) {
  return GetNamespace(record).find("testing") != std::string::npos;
}

bool IsGtestTestFixture(const CXXRecordDecl* decl) {
  return hasName(decl, "testing", "Test");
}

bool IsMethodInTestingNamespace(const CXXMethodDecl* method) {
  for (auto* overridden : method->overridden_methods()) {
    if (IsMethodInTestingNamespace(overridden) ||
        // Provide an exception for ::testing::Test. gtest itself uses some
        // magic to try to make sure SetUp()/TearDown() aren't capitalized
        // incorrectly, but having the plugin enforce override is also nice.
        (InTestingNamespace(overridden) &&
         !IsGtestTestFixture(overridden->getParent()))) {
      return true;
    }
  }

  return false;
}

bool IsGmockObject(const CXXRecordDecl* decl) {
  // If |record| has member variables whose types are in the "testing" namespace
  // (which is how gmock works behind the scenes), there's a really high chance
  // that |record| is a gmock object.
  for (auto* field : decl->fields()) {
    CXXRecordDecl* record_type = field->getTypeSourceInfo()
                                     ->getTypeLoc()
                                     .getTypePtr()
                                     ->getAsCXXRecordDecl();
    if (record_type) {
      if (InTestingNamespace(record_type)) {
        return true;
      }
    }
  }
  return false;
}

bool IsPodOrTemplateType(const CXXRecordDecl& record) {
  return record.isPOD() || record.getDescribedClassTemplate() ||
         record.getTemplateSpecializationKind() || record.isDependentType();
}

// Use a local RAV implementation to simply collect all FunctionDecls marked for
// late template parsing. This happens with the flag -fdelayed-template-parsing,
// which is on by default in MSVC-compatible mode.
std::set<FunctionDecl*> GetLateParsedFunctionDecls(TranslationUnitDecl* decl) {
  struct Visitor : public RecursiveASTVisitor<Visitor> {
    bool VisitFunctionDecl(FunctionDecl* function_decl) {
      if (function_decl->isLateTemplateParsed()) {
        late_parsed_decls.insert(function_decl);
      }
      return true;
    }

    std::set<FunctionDecl*> late_parsed_decls;
  } v;
  v.TraverseDecl(decl);
  return v.late_parsed_decls;
}

std::string GetAutoReplacementTypeAsString(QualType original_type,
                                           StorageClass storage_class,
                                           bool allow_typedefs) {
  QualType non_reference_type = original_type.getNonReferenceType();
  if (!non_reference_type->isPointerType() ||
      (allow_typedefs && non_reference_type->getAs<clang::TypedefType>())) {
    return storage_class == SC_Static ? "static auto" : "auto";
  }

  std::string result = GetAutoReplacementTypeAsString(
      non_reference_type->getPointeeType(), storage_class, allow_typedefs);
  result += "*";
  if (non_reference_type.isConstQualified()) {
    result += " const";
  }
  if (non_reference_type.isVolatileQualified()) {
    result += " volatile";
  }
  if (original_type->isReferenceType() &&
      !non_reference_type.isConstQualified()) {
    if (original_type->isLValueReferenceType()) {
      result += "&";
    } else if (original_type->isRValueReferenceType()) {
      result += "&&";
    }
  }
  return result;
}

}  // namespace

FindBadConstructsConsumer::FindBadConstructsConsumer(CompilerInstance& instance,
                                                     const Options& options)
    : ChromeClassTester(instance, options) {
  if (options.check_blink_data_member_type) {
    blink_data_member_type_checker_.reset(
        new BlinkDataMemberTypeChecker(instance));
  }
  if (options.check_ipc) {
    ipc_visitor_.reset(new CheckIPCVisitor(instance));
  }
  if (options.check_layout_object_methods) {
    layout_visitor_.reset(new CheckLayoutObjectMethodsVisitor(instance));
  }
  if (options.check_stack_allocated) {
    stack_allocated_checker_.reset(new StackAllocatedChecker(instance));
  }

  // Messages for virtual methods.
  diag_method_requires_override_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Overriding method must be marked with 'override' or "
      "'final'.");
  diag_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
      getErrorLevel(), "[chromium-style] %0 is redundant; %1 implies %0.");
  diag_will_be_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
      getErrorLevel(), "[chromium-style] %0 will be redundant; %1 implies %0.");
  // http://llvm.org/bugs/show_bug.cgi?id=21051 has been filed to make this a
  // Clang warning.
  diag_base_method_virtual_and_final_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] The virtual method does not override anything and is "
      "final; consider making it non-virtual.");
  diag_virtual_with_inline_body_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] virtual methods with non-empty bodies shouldn't be "
      "declared inline.");

  // Messages for constructors.
  diag_no_explicit_ctor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Complex class/struct needs an explicit out-of-line "
      "constructor.");
  diag_no_explicit_copy_ctor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Complex class/struct needs an explicit out-of-line "
      "copy constructor.");
  diag_inline_complex_ctor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Complex constructor has an inlined body.");

  // Messages for destructors.
  diag_no_explicit_dtor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Complex class/struct needs an explicit out-of-line "
      "destructor.");
  diag_inline_complex_dtor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Complex destructor has an inline body.");

  // Messages for refcounted objects.
  diag_refcounted_needs_explicit_dtor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Classes that are ref-counted should have explicit "
      "destructors that are declared protected or private.");
  diag_refcounted_with_public_dtor_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] Classes that are ref-counted should have "
      "destructors that are declared protected or private.");
  diag_refcounted_with_protected_non_virtual_dtor_ =
      diagnostic().getCustomDiagID(
          getErrorLevel(),
          "[chromium-style] Classes that are ref-counted and have non-private "
          "destructors should declare their destructor virtual.");

  // Miscellaneous messages.
  diag_weak_ptr_factory_order_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] WeakPtrFactory members which refer to their outer "
      "class must be the last member in the outer class definition.");
  diag_bad_enum_max_value_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] kMaxValue enumerator does not match max value %0 of "
      "other enumerators");
  diag_enum_max_value_unique_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] kMaxValue enumerator should not have a unique value: "
      "it should share the value of the highest enumerator");
  diag_auto_deduced_to_a_pointer_type_ =
      diagnostic().getCustomDiagID(getErrorLevel(),
                                   "[chromium-style] auto variable type "
                                   "must not deduce to a raw pointer "
                                   "type.");

  // Registers notes to make it easier to interpret warnings.
  diag_note_inheritance_ = diagnostic().getCustomDiagID(
      DiagnosticsEngine::Note, "[chromium-style] %0 inherits from %1 here");
  diag_note_implicit_dtor_ = diagnostic().getCustomDiagID(
      DiagnosticsEngine::Note,
      "[chromium-style] No explicit destructor for %0 defined");
  diag_note_public_dtor_ = diagnostic().getCustomDiagID(
      DiagnosticsEngine::Note,
      "[chromium-style] Public destructor declared here");
  diag_note_protected_non_virtual_dtor_ = diagnostic().getCustomDiagID(
      DiagnosticsEngine::Note,
      "[chromium-style] Protected non-virtual destructor declared here");

  diag_span_from_string_literal_ = diagnostic().getCustomDiagID(
      getErrorLevel(),
      "[chromium-style] span construction from string literal is problematic.");
  diag_note_span_from_string_literal1_ = diagnostic().getCustomDiagID(
      DiagnosticsEngine::Note,
      "To make a span from a string literal, use:\n"
      "  * base::span_from_cstring() to make a span without the NUL "
      "terminator\n"
      "  * base::span_with_nul_from_cstring() to make a span with the NUL "
      "terminator\n"
      "  * a string view type instead of a string literal");
}

void FindBadConstructsConsumer::Traverse(ASTContext& context) {
  if (ipc_visitor_) {
    ipc_visitor_->set_context(&context);
    ParseFunctionTemplates(context.getTranslationUnitDecl());
  }

  if (layout_visitor_) {
    llvm::TimeTraceScope TimeScope(
        "VisitLayoutObjectMethods in "
        "FindBadConstructsConsumer::Traverse");
    layout_visitor_->VisitLayoutObjectMethods(context);
  }

  {
    llvm::TimeTraceScope TimeScope(
        "TraverseDecl in FindBadConstructsConsumer::Traverse");
    RecursiveASTVisitor::TraverseDecl(context.getTranslationUnitDecl());
  }

  if (ipc_visitor_) {
    ipc_visitor_->set_context(nullptr);
  }
}

bool FindBadConstructsConsumer::TraverseDecl(Decl* decl) {
  if (ipc_visitor_) {
    ipc_visitor_->BeginDecl(decl);
  }
  bool result = RecursiveASTVisitor::TraverseDecl(decl);
  if (ipc_visitor_) {
    ipc_visitor_->EndDecl();
  }
  return result;
}

bool FindBadConstructsConsumer::VisitCXXConstructExpr(
    clang::CXXConstructExpr* expr) {
  if (options_.span_ctor_from_string_literal) {
    CheckConstructingSpanFromStringLiteral(
        expr->getConstructor(),
        llvm::ArrayRef(expr->getArgs(), expr->getNumArgs()),
        expr->getExprLoc());
  }
  return true;
}

bool FindBadConstructsConsumer::VisitCXXRecordDecl(
    clang::CXXRecordDecl* cxx_record_decl) {
  if (stack_allocated_checker_) {
    stack_allocated_checker_->Check(cxx_record_decl);
  }
  return true;
}

bool FindBadConstructsConsumer::VisitEnumDecl(clang::EnumDecl* decl) {
  CheckEnumMaxValue(decl);
  return true;
}

bool FindBadConstructsConsumer::VisitTagDecl(clang::TagDecl* tag_decl) {
  if (tag_decl->isCompleteDefinition()) {
    CheckTag(tag_decl);
  }
  return true;
}

bool FindBadConstructsConsumer::VisitTemplateSpecializationType(
    TemplateSpecializationType* spec) {
  if (ipc_visitor_) {
    ipc_visitor_->VisitTemplateSpecializationType(spec);
  }
  return true;
}

bool FindBadConstructsConsumer::VisitCallExpr(CallExpr* call_expr) {
  if (ipc_visitor_) {
    ipc_visitor_->VisitCallExpr(call_expr);
  }
  return true;
}

bool FindBadConstructsConsumer::VisitVarDecl(clang::VarDecl* var_decl) {
  CheckDeducedAutoPointer(var_decl);
  return true;
}

void FindBadConstructsConsumer::CheckChromeClass(LocationType location_type,
                                                 SourceLocation record_location,
                                                 CXXRecordDecl* record) {
  bool implementation_file = InImplementationFile(record_location);

  if (!implementation_file) {
    // Only check for "heavy" constructors/destructors in header files;
    // within implementation files, there is no performance cost.

    // If this is a POD or a class template or a type dependent on a
    // templated class, assume there's no ctor/dtor/virtual method
    // optimization that we should do.
    if (!IsPodOrTemplateType(*record)) {
      CheckCtorDtorWeight(record_location, record);
    }
  }

  bool warn_on_inline_bodies = !implementation_file;
  // Check that all virtual methods are annotated with override or final.
  // Note this could also apply to templates, but for some reason Clang
  // does not always see the "override", so we get false positives.
  // See http://llvm.org/bugs/show_bug.cgi?id=18440 and
  //     http://llvm.org/bugs/show_bug.cgi?id=21942
  if (!IsPodOrTemplateType(*record)) {
    CheckVirtualMethods(record_location, record, warn_on_inline_bodies);
  }

  // TODO(dcheng): This is needed because some of the diagnostics for refcounted
  // classes use DiagnosticsEngine::Report() directly, and there are existing
  // violations in Blink. This should be removed once the checks are
  // modularized.
  if (location_type != LocationType::kBlink) {
    CheckRefCountedDtors(record_location, record);
  }

  if (blink_data_member_type_checker_ &&
      location_type == LocationType::kBlink) {
    blink_data_member_type_checker_->CheckClass(record_location, record);
  }

  CheckWeakPtrFactoryMembers(record_location, record);
}

void FindBadConstructsConsumer::CheckEnumMaxValue(EnumDecl* decl) {
  if (!decl->isScoped()) {
    return;
  }

  clang::EnumConstantDecl* max_value = nullptr;
  std::set<clang::EnumConstantDecl*> max_enumerators;
  llvm::APSInt max_seen;
  for (clang::EnumConstantDecl* enumerator : decl->enumerators()) {
    if (enumerator->getName() == "kMaxValue") {
      max_value = enumerator;
    }

    llvm::APSInt current_value = enumerator->getInitVal();
    if (max_enumerators.empty()) {
      max_enumerators.emplace(enumerator);
      max_seen = current_value;
      continue;
    }

    assert(max_seen.isSigned() == current_value.isSigned());

    if (current_value < max_seen) {
      continue;
    }

    if (current_value == max_seen) {
      max_enumerators.emplace(enumerator);
      continue;
    }

    assert(current_value > max_seen);
    max_enumerators.clear();
    max_enumerators.emplace(enumerator);
    max_seen = current_value;
  }

  if (!max_value) {
    return;
  }

  if (max_enumerators.find(max_value) == max_enumerators.end()) {
    ReportIfSpellingLocNotIgnored(max_value->getLocation(),
                                  diag_bad_enum_max_value_)
        << toString(max_seen, 10);
  } else if (max_enumerators.size() < 2) {
    ReportIfSpellingLocNotIgnored(decl->getLocation(),
                                  diag_enum_max_value_unique_);
  }
}

void FindBadConstructsConsumer::CheckCtorDtorWeight(
    SourceLocation record_location,
    CXXRecordDecl* record) {
  // We don't handle anonymous structs. If this record doesn't have a
  // name, it's of the form:
  //
  // struct {
  //   ...
  // } name_;
  if (record->getIdentifier() == NULL) {
    return;
  }

  // We don't handle unions.
  if (record->isUnion()) {
    return;
  }

  // Skip records that derive from ignored base classes.
  if (HasIgnoredBases(record)) {
    return;
  }

  // Count the number of templated base classes as a feature of whether the
  // destructor can be inlined.
  int templated_base_classes = 0;
  for (CXXRecordDecl::base_class_const_iterator it = record->bases_begin();
       it != record->bases_end(); ++it) {
    if (it->getTypeSourceInfo()->getTypeLoc().getTypeLocClass() ==
        TypeLoc::TemplateSpecialization) {
      ++templated_base_classes;
    }
  }

  // Count the number of trivial and non-trivial member variables.
  int trivial_member = 0;
  int non_trivial_member = 0;
  int templated_non_trivial_member = 0;
  for (RecordDecl::field_iterator it = record->field_begin();
       it != record->field_end(); ++it) {
    switch (ClassifyType(it->getType().getTypePtr())) {
      case TypeClassification::kTrivial:
        trivial_member += 1;
        break;
      case TypeClassification::kNonTrivial:
        non_trivial_member += 1;
        break;
      case TypeClassification::kTrivialTemplate:
        trivial_member += 1;
        break;
      case TypeClassification::kNonTrivialTemplate:
        templated_non_trivial_member += 1;
        break;
      case TypeClassification::kNonTrivialExternTemplate:
        non_trivial_member += 1;
        break;
    }
  }

  // Check to see if we need to ban inlined/synthesized constructors. Note
  // that the cutoffs here are kind of arbitrary. Scores over 10 break.
  int dtor_score = 0;
  // Deriving from a templated base class shouldn't be enough to trigger
  // the ctor warning, but if you do *anything* else, it should.
  //
  // TODO(erg): This is motivated by templated base classes that don't have
  // any data members. Somehow detect when templated base classes have data
  // members and treat them differently.
  dtor_score += templated_base_classes * 9;
  // Instantiating a template is an insta-hit.
  dtor_score += templated_non_trivial_member * 10;
  // The fourth normal class member should trigger the warning.
  dtor_score += non_trivial_member * 3;

  int ctor_score = dtor_score;
  // You should be able to have 9 ints before we warn you.
  ctor_score += trivial_member;

  if (ctor_score >= 10) {
    if (!record->hasUserDeclaredConstructor()) {
      ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_ctor_);
    } else {
      // Iterate across all the constructors in this file and yell if we
      // find one that tries to be inline.
      for (CXXRecordDecl::ctor_iterator it = record->ctor_begin();
           it != record->ctor_end(); ++it) {
        // The current check is buggy in C++20 (but was more correct in C++14).
        // An implicit copy constructor does not have an inline body, so this
        // check never fires for classes with a user-declared out-of-line
        // constructor.
        if (it->hasInlineBody()) {
          if (it->isCopyConstructor() &&
              !record->hasUserDeclaredCopyConstructor()) {
            // In general, implicit constructors are generated on demand.  But
            // in the Windows component build, dllexport causes instantiation of
            // the copy constructor which means that this fires on many more
            // classes. For now, suppress this on dllexported classes.
            // (This does mean that windows component builds will not emit this
            // warning in some cases where it is emitted in other configs, but
            // that's the better tradeoff at this point).
            // TODO(dcheng): With the RecursiveASTVisitor, these warnings might
            // be emitted on other platforms too, reevaluate if we want to keep
            // suppressing this then http://crbug.com/467288
            if (!record->hasAttr<DLLExportAttr>()) {
              ReportIfSpellingLocNotIgnored(record_location,
                                            diag_no_explicit_copy_ctor_);
            }
          } else {
            // See the comment in the previous branch about copy constructors.
            // This does the same for implicit move constructors.
            bool is_likely_compiler_generated_dllexport_move_ctor =
                it->isMoveConstructor() &&
                !record->hasUserDeclaredMoveConstructor() &&
                record->hasAttr<DLLExportAttr>();
            if (!is_likely_compiler_generated_dllexport_move_ctor) {
              ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
                                            diag_inline_complex_ctor_);
            }
          }
        } else if (it->isInlined() && !it->isInlineSpecified() &&
                   !it->isDeleted() &&
                   (!it->isCopyOrMoveConstructor() ||
                    it->isExplicitlyDefaulted())) {
          // isInlined() is a more reliable check than hasInlineBody(), but
          // unfortunately, it results in warnings for implicit copy/move
          // constructors in the previously mentioned situation. To preserve
          // compatibility with existing Chromium code, only warn if it's an
          // explicitly defaulted copy or move constructor.
          ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
                                        diag_inline_complex_ctor_);
        }
      }
    }
  }

  // The destructor side is equivalent except that we don't check for
  // trivial members; 20 ints don't need a destructor.
  if (dtor_score >= 10 && !record->hasTrivialDestructor()) {
    if (!record->hasUserDeclaredDestructor()) {
      ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_dtor_);
    } else if (CXXDestructorDecl* dtor = record->getDestructor()) {
      if (dtor->isInlined() && !dtor->isInlineSpecified() &&
          !dtor->isDeleted()) {
        ReportIfSpellingLocNotIgnored(dtor->getInnerLocStart(),
                                      diag_inline_complex_dtor_);
      }
    }
  }
}

SuppressibleDiagnosticBuilder
FindBadConstructsConsumer::ReportIfSpellingLocNotIgnored(
    SourceLocation loc,
    unsigned diagnostic_id) {
  LocationType type =
      ClassifyLocation(instance().getSourceManager().getSpellingLoc(loc));
  bool ignored = type == LocationType::kThirdParty;
  if (type == LocationType::kBlink) {
    if (diagnostic_id == diag_no_explicit_ctor_ ||
        diagnostic_id == diag_no_explicit_copy_ctor_ ||
        diagnostic_id == diag_inline_complex_ctor_ ||
        diagnostic_id == diag_no_explicit_dtor_ ||
        diagnostic_id == diag_inline_complex_dtor_ ||
        diagnostic_id == diag_refcounted_with_protected_non_virtual_dtor_ ||
        diagnostic_id == diag_virtual_with_inline_body_) {
      // Certain checks are ignored in Blink for historical reasons.
      // TODO(dcheng): Make this list smaller.
      ignored = true;
    }
  }
  return SuppressibleDiagnosticBuilder(&diagnostic(), loc, diagnostic_id,
                                       ignored);
}

// Checks that virtual methods are correctly annotated, and have no body in a
// header file.
void FindBadConstructsConsumer::CheckVirtualMethods(
    SourceLocation record_location,
    CXXRecordDecl* record,
    bool warn_on_inline_bodies) {
  if (IsGmockObject(record)) {
    warn_on_inline_bodies = false;
  }

  for (CXXRecordDecl::method_iterator it = record->method_begin();
       it != record->method_end(); ++it) {
    if (it->isCopyAssignmentOperator() || isa<CXXConstructorDecl>(*it)) {
      // Ignore constructors and assignment operators.
    } else if (isa<CXXDestructorDecl>(*it) &&
               !record->hasUserDeclaredDestructor()) {
      // Ignore non-user-declared destructors.
    } else if (!it->isVirtual()) {
      continue;
    } else {
      CheckVirtualSpecifiers(*it);
      if (warn_on_inline_bodies) {
        CheckVirtualBodies(*it);
      }
    }
  }
}

// Makes sure that virtual methods use the most appropriate specifier. If a
// virtual method overrides a method from a base class, only the override
// specifier should be used. If the method should not be overridden by derived
// classes, only the final specifier should be used.
void FindBadConstructsConsumer::CheckVirtualSpecifiers(
    const CXXMethodDecl* method) {
  bool is_override = method->size_overridden_methods() > 0;
  bool has_virtual = method->isVirtualAsWritten();
  OverrideAttr* override_attr = method->getAttr<OverrideAttr>();
  FinalAttr* final_attr = method->getAttr<FinalAttr>();

  if (IsMethodInTestingNamespace(method)) {
    return;
  }

  SourceManager& manager = instance().getSourceManager();
  const LangOptions& lang_opts = instance().getLangOpts();

  // Grab the stream of tokens from the beginning of the method
  bool remove_virtual = false;
  bool add_override = false;

  // Complain if a method is annotated virtual && (override || final).
  if (has_virtual && (override_attr || final_attr)) {
    remove_virtual = true;
  }

  // Complain if a method is an override and is not annotated with override or
  // final.
  if (is_override && !override_attr && !final_attr) {
    add_override = true;
    // Also remove the virtual in the same fixit if currently present.
    if (has_virtual) {
      remove_virtual = true;
    }
  }

  if (final_attr && override_attr) {
    ReportIfSpellingLocNotIgnored(override_attr->getLocation(),
                                  diag_redundant_virtual_specifier_)
        << override_attr << final_attr
        << FixItHint::CreateRemoval(override_attr->getRange());
  }

  if (!remove_virtual && !add_override) {
    return;
  }

  // Deletion of virtual and insertion of override are tricky. The AST does not
  // expose the location of `virtual` or `=`: the former is useful when trying
  // to remove `virtual, while the latter is useful when trying to insert
  // `override`. Iterate over the tokens from |method->getBeginLoc()| until:
  // 1. A `{` not nested inside parentheses is found or
  // 2. A `=` not nested inside parentheses is found or
  // 3. A `;` not nested inside parentheses is found or
  // 4. The end of the file is found.
  SourceLocation virtual_loc;
  SourceLocation override_insertion_loc;
  // Attempt to set up the lexer in raw mode.
  std::pair<FileID, unsigned> decomposed_start =
      manager.getDecomposedLoc(method->getBeginLoc());
  bool invalid = false;
  StringRef buffer = manager.getBufferData(decomposed_start.first, &invalid);
  if (!invalid) {
    int nested_parentheses = 0;
    Lexer lexer(manager.getLocForStartOfFile(decomposed_start.first), lang_opts,
                buffer.begin(), buffer.begin() + decomposed_start.second,
                buffer.end());
    Token token;
    while (!lexer.LexFromRawLexer(token)) {
      // Found '=', ';', or '{'. No need to scan any further, since an override
      // fixit hint won't be inserted after any of these tokens.
      if ((token.is(tok::equal) || token.is(tok::semi) ||
           token.is(tok::l_brace)) &&
          nested_parentheses == 0) {
        override_insertion_loc = token.getLocation();
        break;
      }
      if (token.is(tok::l_paren)) {
        ++nested_parentheses;
      } else if (token.is(tok::r_paren)) {
        --nested_parentheses;
      } else if (token.is(tok::raw_identifier)) {
        // TODO(dcheng): Unclear if this needs to check for nested parentheses
        // as well?
        if (token.getRawIdentifier() == "virtual") {
          virtual_loc = token.getLocation();
        }
      }
    }
  }

  if (add_override && override_insertion_loc.isValid()) {
    ReportIfSpellingLocNotIgnored(override_insertion_loc,
                                  diag_method_requires_override_)
        << FixItHint::CreateInsertion(override_insertion_loc, " override");
  }
  if (remove_virtual && virtual_loc.isValid()) {
    ReportIfSpellingLocNotIgnored(
        virtual_loc, add_override ? diag_will_be_redundant_virtual_specifier_
                                  : diag_redundant_virtual_specifier_)
        << "'virtual'"
        // Slightly subtle: the else case handles both the currently and the
        // will be redundant case for override. Doing the check this way also
        // lets the plugin prioritize keeping 'final' over 'override' when both
        // are present.
        << (final_attr ? "'final'" : "'override'")
        << FixItHint::CreateRemoval(
               CharSourceRange::getTokenRange(SourceRange(virtual_loc)));
  }
}

void FindBadConstructsConsumer::CheckVirtualBodies(
    const CXXMethodDecl* method) {
  // Virtual methods should not have inline definitions beyond "{}". This
  // only matters for header files.
  if (method->hasBody() && method->hasInlineBody()) {
    if (CompoundStmt* cs = dyn_cast<CompoundStmt>(method->getBody())) {
      if (cs->size()) {
        SourceLocation loc = cs->getLBracLoc();
        // CR_BEGIN_MSG_MAP_EX and BEGIN_SAFE_MSG_MAP_EX try to be compatible
        // to BEGIN_MSG_MAP(_EX).  So even though they are in chrome code,
        // we can't easily fix them, so explicitly allowlist them here.
        bool emit = true;
        if (loc.isMacroID()) {
          SourceManager& manager = instance().getSourceManager();
          LocationType type = ClassifyLocation(manager.getSpellingLoc(loc));
          if (type == LocationType::kThirdParty ||
              type == LocationType::kBlink) {
            emit = false;
          } else {
            StringRef name = Lexer::getImmediateMacroName(
                loc, manager, instance().getLangOpts());
            if (name == "CR_BEGIN_MSG_MAP_EX" ||
                name == "BEGIN_SAFE_MSG_MAP_EX") {
              emit = false;
            }
          }
        }
        if (emit) {
          ReportIfSpellingLocNotIgnored(loc, diag_virtual_with_inline_body_);
        }
      }
    }
  }
}

FindBadConstructsConsumer::TypeClassification
FindBadConstructsConsumer::ClassifyType(const Type* type) {
  switch (type->getTypeClass()) {
    case Type::Record: {
      auto* record_decl = type->getAsCXXRecordDecl();
      // Simplifying; the whole class isn't trivial if the dtor is, but
      // we use this as a signal about complexity.
      // Note that if a record doesn't have a definition, it doesn't matter how
      // it's counted, since the translation unit will fail to build. In that
      // case, just count it as a trivial member to avoid emitting warnings that
      // might be spurious.
      if (!record_decl->hasDefinition() ||
          record_decl->hasTrivialDestructor()) {
        return TypeClassification::kTrivial;
      }

      // `std::basic_string` is externed by libc++, so even though it's a
      // non-trivial type wrapped by a template, we shouldn't classify it as a
      // `kNonTrivialTemplate`. The `kNonTrivialExternTemplate` classification
      // exists for this purpose.
      // https://github.com/llvm-mirror/libcxx/blob/78d6a7767ed57b50122a161b91f59f19c9bd0d19/include/string#L4317
      if (hasName(record_decl, "std", "basic_string")) {
        return TypeClassification::kNonTrivialExternTemplate;
      }

      // `base::raw_ptr` and `base::raw_ref` are non-trivial if the
      // `use_backup_ref_ptr` flag is enabled, and trivial otherwise. Since
      // there are many existing types using this that we don't wish to burden
      // with defining custom ctors/dtors, and we'd rather not vary on
      // triviality by build config, treat this as always trivial.
      if (hasName(record_decl, "base", "raw_ptr") ||
          (options_.raw_ref_template_as_trivial_member &&
           hasName(record_decl, "base", "raw_ref"))) {
        return TypeClassification::kTrivialTemplate;
      }

      return TypeClassification::kNonTrivial;
    }
    case Type::TemplateSpecialization: {
      // A "Template Specialization" is a type produced by providing arguments
      // to any type template, not necessarily just a template which has
      // explicitly declared specializations. This may be a regular type
      // template, or a templated type alias.
      //
      // A great way to reason about templates is as a compile-time function
      // taking compile-time arguments, and producing a regular type. In the
      // context of a `TemplateSpecializationType`, we're referring to this
      // particular invocation of that function. We can "desugar" that into the
      // produced type, which is no longer seen as a template.
      //
      // Types produced by templates are of particular concern here, since they
      // almost certainly have inline ctors/dtors and may result in lots of code
      // being generated for types containing them. For that reason, non-trivial
      // templates are weighted higher than regular non-trivial types.
      auto* template_type = dyn_cast<TemplateSpecializationType>(type);

      // If this is a template type alias, just consider the underlying type
      // without the context of it being a template.
      // For an example:
      //
      // template <typename T>
      // using Foo = Bar<T>;
      //
      // Given `Foo<Baz>`, we want to classify it simply as `Bar<Baz>` would be.
      if (template_type->isTypeAlias()) {
        return ClassifyType(template_type->getAliasedType().getTypePtr());
      }

      // Otherwise, classify the type produced by the template and apply the
      // corresponding template classification. For an example:
      //
      // template <typename T>
      // struct Foo { ... };
      //
      // Given `Foo<Baz>`, classify `struct Foo { ... };` with `Baz` substituted
      // for `T`;
      const auto classification =
          ClassifyType(template_type->desugar().getTypePtr());
      if (classification == TypeClassification::kTrivial) {
        return TypeClassification::kTrivialTemplate;
      }
      if (classification == TypeClassification::kNonTrivial) {
        return TypeClassification::kNonTrivialTemplate;
      }

      return classification;
    }
    case Type::SubstTemplateTypeParm: {
      // `SubstTemplateTypeParmType` appears wherever a template type parameter
      // is encountered, and may be desugared into the type argument given to
      // the template. For example:
      //
      // template <typename T>
      // struct Foo {
      //  T bar; // <-- `bar` here is a `SubstTemplateTypeParmType`
      // };
      //
      // or
      //
      // template <typename T>
      // using Foo = T; // <-- `T` here is a `SubstTemplateTypeParmType`
      const auto* const subst_type = dyn_cast<SubstTemplateTypeParmType>(type)
                                         ->getReplacementType()
                                         .getTypePtr();
      return ClassifyType(subst_type);
    }
    case Type::Elaborated: {
      // Quote from the LLVM documentation:
      // "Represents a type that was referred to using an elaborated type
      // keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, or
      // both. This type is used to keep track of a type name as written in the
      // source code, including tag keywords and any nested-name-specifiers. The
      // type itself is always "sugar", used to express what was written in the
      // source code but containing no additional semantic information."
      return ClassifyType(
          dyn_cast<ElaboratedType>(type)->getNamedType().getTypePtr());
    }
    case Type::Typedef: {
      // A "typedef type" is the representation of a type named through a
      // typedef (or a C++11 type alias). In this case, we don't care about the
      // typedef itself, so we desugar it into the underlying type and classify
      // that.
      const auto* const decl = dyn_cast<TypedefType>(type)->getDecl();
      return ClassifyType(decl->getUnderlyingType().getTypePtr());
    }
    default: {
      // Stupid assumption: anything we see that isn't the above is a POD
      // or reference type.
      return TypeClassification::kTrivial;
    }
  }
}

// Check |record| for issues that are problematic for ref-counted types.
// Note that |record| may not be a ref-counted type, but a base class for
// a type that is.
// If there are issues, update |loc| with the SourceLocation of the issue
// and returns appropriately, or returns None if there are no issues.
// static
FindBadConstructsConsumer::RefcountIssue
FindBadConstructsConsumer::CheckRecordForRefcountIssue(
    const CXXRecordDecl* record,
    SourceLocation& loc) {
  if (!record->hasUserDeclaredDestructor()) {
    loc = record->getLocation();
    return ImplicitDestructor;
  }

  if (CXXDestructorDecl* dtor = record->getDestructor()) {
    if (dtor->getAccess() == AS_public) {
      loc = dtor->getInnerLocStart();
      return PublicDestructor;
    }
  }

  return None;
}

// Returns true if |base| specifies one of the Chromium reference counted
// classes (base::RefCounted / base::RefCountedThreadSafe).
bool FindBadConstructsConsumer::IsRefCounted(const CXXBaseSpecifier* base,
                                             CXXBasePath& path) {
  const TemplateSpecializationType* base_type =
      dyn_cast<TemplateSpecializationType>(
          UnwrapType(base->getType().getTypePtr()));
  if (!base_type) {
    // Base-most definition is not a template, so this cannot derive from
    // base::RefCounted. However, it may still be possible to use with a
    // scoped_refptr<> and support ref-counting, so this is not a perfect
    // guarantee of safety.
    return false;
  }

  TemplateName name = base_type->getTemplateName();
  if (TemplateDecl* decl = name.getAsTemplateDecl()) {
    std::string base_name = decl->getNameAsString();

    // Check for both base::RefCounted and base::RefCountedThreadSafe.
    if (base_name.compare(0, 10, "RefCounted") == 0 &&
        GetNamespace(decl) == "base") {
      return true;
    }
  }

  return false;
}

// Returns true if |base| specifies a class that has a public destructor,
// either explicitly or implicitly.
// static
bool FindBadConstructsConsumer::HasPublicDtorCallback(
    const CXXBaseSpecifier* base,
    CXXBasePath& path,
    void* user_data) {
  // Only examine paths that have public inheritance, as they are the
  // only ones which will result in the destructor potentially being
  // exposed. This check is largely redundant, as Chromium code should be
  // exclusively using public inheritance.
  if (path.Access != AS_public) {
    return false;
  }

  CXXRecordDecl* record =
      dyn_cast<CXXRecordDecl>(base->getType()->getAs<RecordType>()->getDecl());
  SourceLocation unused;
  return None != CheckRecordForRefcountIssue(record, unused);
}

// Outputs a C++ inheritance chain as a diagnostic aid.
void FindBadConstructsConsumer::PrintInheritanceChain(const CXXBasePath& path) {
  for (CXXBasePath::const_iterator it = path.begin(); it != path.end(); ++it) {
    diagnostic().Report(it->Base->getBeginLoc(), diag_note_inheritance_)
        << it->Class << it->Base->getType();
  }
}

unsigned FindBadConstructsConsumer::DiagnosticForIssue(RefcountIssue issue) {
  switch (issue) {
    case ImplicitDestructor:
      return diag_refcounted_needs_explicit_dtor_;
    case PublicDestructor:
      return diag_refcounted_with_public_dtor_;
    case None:
      assert(false && "Do not call DiagnosticForIssue with issue None");
      return 0;
  }
  assert(false);
  return 0;
}

// Check |record| to determine if it has any problematic refcounting
// issues and, if so, print them as warnings/errors based on the current
// value of getErrorLevel().
//
// If |record| is a C++ class, and if it inherits from one of the Chromium
// ref-counting classes (base::RefCounted / base::RefCountedThreadSafe),
// ensure that there are no public destructors in the class hierarchy. This
// is to guard against accidentally stack-allocating a RefCounted class or
// sticking it in a non-ref-counted container (like std::unique_ptr<>).
void FindBadConstructsConsumer::CheckRefCountedDtors(
    SourceLocation record_location,
    CXXRecordDecl* record) {
  // Skip anonymous structs.
  if (record->getIdentifier() == NULL) {
    return;
  }

  // Determine if the current type is even ref-counted.
  CXXBasePaths refcounted_path;
  if (!record->lookupInBases(
          [this](const CXXBaseSpecifier* base, CXXBasePath& path) {
            return IsRefCounted(base, path);
          },
          refcounted_path)) {
    return;  // Class does not derive from a ref-counted base class.
  }

  // Easy check: Check to see if the current type is problematic.
  SourceLocation loc;
  RefcountIssue issue = CheckRecordForRefcountIssue(record, loc);
  if (issue != None) {
    diagnostic().Report(loc, DiagnosticForIssue(issue));
    PrintInheritanceChain(refcounted_path.front());
    return;
  }
  if (CXXDestructorDecl* dtor =
          refcounted_path.begin()->back().Class->getDestructor()) {
    if (dtor->getAccess() == AS_protected && !dtor->isVirtual()) {
      loc = dtor->getInnerLocStart();
      ReportIfSpellingLocNotIgnored(
          loc, diag_refcounted_with_protected_non_virtual_dtor_);
      return;
    }
  }

  // Long check: Check all possible base classes for problematic
  // destructors. This checks for situations involving multiple
  // inheritance, where the ref-counted class may be implementing an
  // interface that has a public or implicit destructor.
  //
  // struct SomeInterface {
  //   virtual void DoFoo();
  // };
  //
  // struct RefCountedInterface
  //    : public base::RefCounted<RefCountedInterface>,
  //      public SomeInterface {
  //  private:
  //   friend class base::Refcounted<RefCountedInterface>;
  //   virtual ~RefCountedInterface() {}
  // };
  //
  // While RefCountedInterface is "safe", in that its destructor is
  // private, it's possible to do the following "unsafe" code:
  //   scoped_refptr<RefCountedInterface> some_class(
  //       new RefCountedInterface);
  //   // Calls SomeInterface::~SomeInterface(), which is unsafe.
  //   delete static_cast<SomeInterface*>(some_class.get());
  if (!options_.check_base_classes) {
    return;
  }

  // Find all public destructors. This will record the class hierarchy
  // that leads to the public destructor in |dtor_paths|.
  CXXBasePaths dtor_paths;
  if (!record->lookupInBases(
          [](const CXXBaseSpecifier* base, CXXBasePath& path) {
            // TODO(thakis): Inline HasPublicDtorCallback() after clang roll.
            return HasPublicDtorCallback(base, path, nullptr);
          },
          dtor_paths)) {
    return;
  }

  for (CXXBasePaths::const_paths_iterator it = dtor_paths.begin();
       it != dtor_paths.end(); ++it) {
    // The record with the problem will always be the last record
    // in the path, since it is the record that stopped the search.
    const CXXRecordDecl* problem_record = dyn_cast<CXXRecordDecl>(
        it->back().Base->getType()->getAs<RecordType>()->getDecl());

    issue = CheckRecordForRefcountIssue(problem_record, loc);

    if (issue == ImplicitDestructor) {
      diagnostic().Report(record_location,
                          diag_refcounted_needs_explicit_dtor_);
      PrintInheritanceChain(refcounted_path.front());
      diagnostic().Report(loc, diag_note_implicit_dtor_) << problem_record;
      PrintInheritanceChain(*it);
    } else if (issue == PublicDestructor) {
      diagnostic().Report(record_location, diag_refcounted_with_public_dtor_);
      PrintInheritanceChain(refcounted_path.front());
      diagnostic().Report(loc, diag_note_public_dtor_);
      PrintInheritanceChain(*it);
    }
  }
}

// Check for any problems with WeakPtrFactory class members. This currently
// only checks that any WeakPtrFactory<T> member of T appears as the last
// data member in T. We could consider checking for bad uses of
// WeakPtrFactory to refer to other data members, but that would require
// looking at the initializer list in constructors to see what the factory
// points to.
// Note, if we later add other unrelated checks of data members, we should
// consider collapsing them in to one loop to avoid iterating over the data
// members more than once.
void FindBadConstructsConsumer::CheckWeakPtrFactoryMembers(
    SourceLocation record_location,
    CXXRecordDecl* record) {
  // Skip anonymous structs.
  if (record->getIdentifier() == NULL) {
    return;
  }

  // Iterate through members of the class.
  RecordDecl::field_iterator iter(record->field_begin()),
      the_end(record->field_end());
  SourceLocation weak_ptr_factory_location;  // Invalid initially.
  for (; iter != the_end; ++iter) {
    const TemplateSpecializationType* template_spec_type =
        iter->getType().getTypePtr()->getAs<TemplateSpecializationType>();
    bool param_is_weak_ptr_factory_to_self = false;
    if (template_spec_type) {
      const TemplateDecl* template_decl =
          template_spec_type->getTemplateName().getAsTemplateDecl();
      if (template_decl &&
          template_spec_type->template_arguments().size() == 1) {
        if (template_decl->getNameAsString().compare("WeakPtrFactory") == 0 &&
            GetNamespace(template_decl) == "base") {
          // Only consider WeakPtrFactory members which are specialized for the
          // owning class.
          const TemplateArgument& arg =
              template_spec_type->template_arguments()[0];
          if (arg.getAsType().getTypePtr()->getAsCXXRecordDecl() ==
              record->getTypeForDecl()->getAsCXXRecordDecl()) {
            if (!weak_ptr_factory_location.isValid()) {
              // Save the first matching WeakPtrFactory member for the
              // diagnostic.
              weak_ptr_factory_location = iter->getLocation();
            }
            param_is_weak_ptr_factory_to_self = true;
          }
        }
      }
    }
    // If we've already seen a WeakPtrFactory<OwningType> and this param is not
    // one of those, it means there is at least one member after a factory.
    if (weak_ptr_factory_location.isValid() &&
        !param_is_weak_ptr_factory_to_self) {
      ReportIfSpellingLocNotIgnored(weak_ptr_factory_location,
                                    diag_weak_ptr_factory_order_);
    }
  }
}

// Copied from BlinkGCPlugin, see crrev.com/1135333007
void FindBadConstructsConsumer::ParseFunctionTemplates(
    TranslationUnitDecl* decl) {
  if (!instance().getLangOpts().DelayedTemplateParsing) {
    return;  // Nothing to do.
  }

  std::set<FunctionDecl*> late_parsed_decls = GetLateParsedFunctionDecls(decl);
  clang::Sema& sema = instance().getSema();

  for (const FunctionDecl* fd : late_parsed_decls) {
    assert(fd->isLateTemplateParsed());

    if (instance().getSourceManager().isInSystemHeader(
            instance().getSourceManager().getSpellingLoc(fd->getLocation()))) {
      continue;
    }

    // Parse and build AST for yet-uninstantiated template functions.
    clang::LateParsedTemplate* lpt = sema.LateParsedTemplateMap[fd].get();
    sema.LateTemplateParser(sema.OpaqueParser, *lpt);
  }
}

// Check whether auto deduces to a raw pointer.
void FindBadConstructsConsumer::CheckDeducedAutoPointer(
    clang::VarDecl* var_decl) {
  // Lambda init-captures should be ignored.
  if (var_decl->isInitCapture()) {
    return;
  }

  QualType qualtype = var_decl->getType().getNonReferenceType();
  // Dependent types in templates can not be fully deduced as they depend on
  // what the template parameter will be. They result in a 'null' deduced_type
  // later. To catch this would require looking at each instantiation but then
  // we could get inconsistent errors for some instantiations and not others.
  if (qualtype->isDependentType()) {
    return;
  }

  // Find the `clang::AutoType` which may be inside a `PointerType`. Since
  // `AutoType` is 'sugar', care must be taken to not skip over it.
  const clang::AutoType* auto_type = nullptr;
  while (!auto_type) {
    // We need to look for AutoType before looking for PointerType, or we will
    // skip right past it, since AutoType is 'sugar'.
    auto_type = qualtype->getAs<clang::AutoType>();
    // If we have a type `auto*` then the pointer needs to be pulled off before
    // we can find the AutoType. If we're not at a pointer, then stop searching
    // for AutoType.
    if (auto* ptr_type = qualtype->getAs<clang::PointerType>()) {
      qualtype = ptr_type->getPointeeType();
    } else {
      break;
    }
  }
  if (!auto_type) {
    return;
  }

  // If not deduced yet, we can't tell if we require `auto*`.
  if (!auto_type->isDeduced()) {
    return;
  }
  // `Concept auto x` should be allowed even if the Concept matches to a pointer
  // type.
  if (auto_type->isConstrained()) {
    return;
  }

  QualType deduced_type = auto_type->getDeducedType();
  // `AutoType` can contain further nested `AutoType`s, so we need to walk
  // through them all.
  while (auto* inner_auto = deduced_type->getAs<clang::AutoType>()) {
    deduced_type = inner_auto->getDeducedType();
  }
  // If `auto` resolves to a function pointer, it's always allowed.
  if (deduced_type.getCanonicalType()->isFunctionPointerType()) {
    return;
  }
  // Elaborated types wrap the type that we're interested in, so we need to
  // step through them. Inside, there may be a template param type, a pointer
  // type, etc. For example, this function returns an ElaboratedType, which
  // has a pointer inside. But has additional sugar around the pointer that
  // we want to examine first.
  // ```
  // template <class T>
  // AliasOfT<T> auto_function_return_elaborated_alias_with_ptr() { ... }
  // ```
  if (auto* elaborated = deduced_type->getAs<clang::ElaboratedType>()) {
    deduced_type = elaborated->getNamedType();
  }
  // If the `auto` resolves to a type that comes from a template parameter, the
  // input type may have been a type alias and we can't tell how the type was
  // actually spelt, so just allow it. This handles the return type of
  // std::find() for example.
  if (deduced_type->getAs<clang::SubstTemplateTypeParmType>()) {
    return;
  }
  // If `auto` resolves to a type alias, it's allowed, even if there's a pointer
  // inside the alias, which would be an implementation detail of the alias
  // type. This includes stdlib iterator aliases.
  if (deduced_type->getAs<clang::TypedefType>()) {
    return;
  }
  // It's also possible to resolve to a template specialization of a type alias,
  // in which the same applies as for TypedefType.
  if (auto* spec = deduced_type->getAs<clang::TemplateSpecializationType>()) {
    if (spec->isTypeAlias()) {
      return;
    }
  }
  // Last, if it's not a pointer at all then `auto` is allowed. This comes last
  // because `getAs()` will jump past 'sugar' in the type, so we need to look
  // for other things before jumping past them to the PointerType.
  if (!deduced_type->getAs<clang::PointerType>()) {
    return;
  }

  // Check if we should even be considering this type. This is the most
  // expensive check, so we check this last.
  LocationType location_type = ClassifyLocation(var_decl->getBeginLoc());
  // We don't generate errors in third-party code.
  if (location_type == LocationType::kThirdParty) {
    return;
  }

  // Report an error, the code should say `auto*` instead of `auto`.
  //
  // The range starts from |var_decl|'s loc start, which is the
  // beginning of the full expression defining this |var_decl|. It
  // ends, however, where this |var_decl|'s type loc ends, since
  // that's the end of the type of |var_decl|.
  // Note that the beginning source location of type loc omits cv
  // qualifiers, which is why it's not a good candidate to use for the
  // start of the range.
  clang::SourceRange range(
      var_decl->getBeginLoc(),
      var_decl->getTypeSourceInfo()->getTypeLoc().getEndLoc());
  ReportIfSpellingLocNotIgnored(range.getBegin(),
                                diag_auto_deduced_to_a_pointer_type_)
      << FixItHint::CreateReplacement(
             range,
             GetAutoReplacementTypeAsString(var_decl->getType(),
                                            var_decl->getStorageClass(), true));
}

void FindBadConstructsConsumer::CheckConstructingSpanFromStringLiteral(
    clang::CXXConstructorDecl* ctor_decl,
    llvm::ArrayRef<const clang::Expr*> args,
    clang::SourceLocation loc) {
  auto* record_decl = clang::cast<clang::RecordDecl>(ctor_decl->getParent());

  if (!hasName(record_decl, "base", "span")) {
    return;
  }

  // Want the base::span(const char (&arr)[N]) constructor.
  bool is_const_char_array_ctor = false;
  if (ctor_decl->getNumParams() == 1u) {
    clang::ParmVarDecl* param = ctor_decl->getParamDecl(0u);
    const clang::Type* type = &*param->getType();
    if (type->isReferenceType()) {
      type = type->getPointeeType()->getUnqualifiedDesugaredType();
      if (auto* array_type = clang::dyn_cast<clang::ConstantArrayType>(type)) {
        const clang::Type* element_type =
            array_type->getElementType()->getUnqualifiedDesugaredType();
        if (element_type->isSpecificBuiltinType(
                clang::BuiltinType::Kind::Char_S)) {
          is_const_char_array_ctor = true;
        }
      }
    }
  }
  if (!is_const_char_array_ctor) {
    return;
  }

  if (args.size() != 1u) {
    return;
  }

  // Find the expression that defines the argument value.
  const clang::Expr* value_expr = args[0u];

  if (auto* ref_expr = clang::dyn_cast<clang::DeclRefExpr>(args[0u])) {
    const clang::VarDecl* var_decl =
        clang::dyn_cast<clang::VarDecl>(ref_expr->getDecl());
    if (var_decl) {
      var_decl = var_decl->getInitializingDeclaration();
      if (var_decl && var_decl->hasInit()) {
        value_expr = var_decl->getInit();
      }
    }
  }

  value_expr = value_expr->IgnoreParens();
  if (auto* lit_expr = clang::dyn_cast<clang::StringLiteral>(value_expr)) {
    ReportIfSpellingLocNotIgnored(loc, diag_span_from_string_literal_);
    ReportIfSpellingLocNotIgnored(loc, diag_note_span_from_string_literal1_);
  }
}

}  // namespace chrome_checker