// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "FindBadConstructsConsumer.h"
#include "Util.h"
#include "clang/AST/Attr.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Lex/Lexer.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace chrome_checker {
namespace {
// A more efficient alternative to NamedDecl::getQualifiedNameAsString():
// `hasName(decl, "foo", "Bar") iff
// `decl->getQualifiedNameAsString() == "foo::Bar".
bool hasName(const TagDecl* decl,
StringRef namespace_name,
StringRef decl_name) {
if (decl->getName() == decl_name) {
auto* nd = clang::dyn_cast<clang::NamespaceDecl>(decl->getParent());
while (nd && nd->isInline()) {
nd = clang::dyn_cast<clang::NamespaceDecl>(nd->getParent());
}
return nd && nd->getParent()->getRedeclContext()->isTranslationUnit() &&
nd->getName() == namespace_name;
}
return false;
}
// Returns the underlying Type for |type| by expanding typedefs and removing
// any namespace qualifiers. This is similar to desugaring, except that for
// ElaboratedTypes, desugar will unwrap too much.
const Type* UnwrapType(const Type* type) {
if (const ElaboratedType* elaborated = dyn_cast<ElaboratedType>(type)) {
return UnwrapType(elaborated->getNamedType().getTypePtr());
}
if (const TypedefType* typedefed = dyn_cast<TypedefType>(type)) {
return UnwrapType(typedefed->desugar().getTypePtr());
}
return type;
}
bool InTestingNamespace(const Decl* record) {
return GetNamespace(record).find("testing") != std::string::npos;
}
bool IsGtestTestFixture(const CXXRecordDecl* decl) {
return hasName(decl, "testing", "Test");
}
bool IsMethodInTestingNamespace(const CXXMethodDecl* method) {
for (auto* overridden : method->overridden_methods()) {
if (IsMethodInTestingNamespace(overridden) ||
// Provide an exception for ::testing::Test. gtest itself uses some
// magic to try to make sure SetUp()/TearDown() aren't capitalized
// incorrectly, but having the plugin enforce override is also nice.
(InTestingNamespace(overridden) &&
!IsGtestTestFixture(overridden->getParent()))) {
return true;
}
}
return false;
}
bool IsGmockObject(const CXXRecordDecl* decl) {
// If |record| has member variables whose types are in the "testing" namespace
// (which is how gmock works behind the scenes), there's a really high chance
// that |record| is a gmock object.
for (auto* field : decl->fields()) {
CXXRecordDecl* record_type = field->getTypeSourceInfo()
->getTypeLoc()
.getTypePtr()
->getAsCXXRecordDecl();
if (record_type) {
if (InTestingNamespace(record_type)) {
return true;
}
}
}
return false;
}
bool IsPodOrTemplateType(const CXXRecordDecl& record) {
return record.isPOD() || record.getDescribedClassTemplate() ||
record.getTemplateSpecializationKind() || record.isDependentType();
}
// Use a local RAV implementation to simply collect all FunctionDecls marked for
// late template parsing. This happens with the flag -fdelayed-template-parsing,
// which is on by default in MSVC-compatible mode.
std::set<FunctionDecl*> GetLateParsedFunctionDecls(TranslationUnitDecl* decl) {
struct Visitor : public RecursiveASTVisitor<Visitor> {
bool VisitFunctionDecl(FunctionDecl* function_decl) {
if (function_decl->isLateTemplateParsed()) {
late_parsed_decls.insert(function_decl);
}
return true;
}
std::set<FunctionDecl*> late_parsed_decls;
} v;
v.TraverseDecl(decl);
return v.late_parsed_decls;
}
std::string GetAutoReplacementTypeAsString(QualType original_type,
StorageClass storage_class,
bool allow_typedefs) {
QualType non_reference_type = original_type.getNonReferenceType();
if (!non_reference_type->isPointerType() ||
(allow_typedefs && non_reference_type->getAs<clang::TypedefType>())) {
return storage_class == SC_Static ? "static auto" : "auto";
}
std::string result = GetAutoReplacementTypeAsString(
non_reference_type->getPointeeType(), storage_class, allow_typedefs);
result += "*";
if (non_reference_type.isConstQualified()) {
result += " const";
}
if (non_reference_type.isVolatileQualified()) {
result += " volatile";
}
if (original_type->isReferenceType() &&
!non_reference_type.isConstQualified()) {
if (original_type->isLValueReferenceType()) {
result += "&";
} else if (original_type->isRValueReferenceType()) {
result += "&&";
}
}
return result;
}
} // namespace
FindBadConstructsConsumer::FindBadConstructsConsumer(CompilerInstance& instance,
const Options& options)
: ChromeClassTester(instance, options) {
if (options.check_blink_data_member_type) {
blink_data_member_type_checker_.reset(
new BlinkDataMemberTypeChecker(instance));
}
if (options.check_ipc) {
ipc_visitor_.reset(new CheckIPCVisitor(instance));
}
if (options.check_layout_object_methods) {
layout_visitor_.reset(new CheckLayoutObjectMethodsVisitor(instance));
}
if (options.check_stack_allocated) {
stack_allocated_checker_.reset(new StackAllocatedChecker(instance));
}
// Messages for virtual methods.
diag_method_requires_override_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Overriding method must be marked with 'override' or "
"'final'.");
diag_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
getErrorLevel(), "[chromium-style] %0 is redundant; %1 implies %0.");
diag_will_be_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
getErrorLevel(), "[chromium-style] %0 will be redundant; %1 implies %0.");
// http://llvm.org/bugs/show_bug.cgi?id=21051 has been filed to make this a
// Clang warning.
diag_base_method_virtual_and_final_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] The virtual method does not override anything and is "
"final; consider making it non-virtual.");
diag_virtual_with_inline_body_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] virtual methods with non-empty bodies shouldn't be "
"declared inline.");
// Messages for constructors.
diag_no_explicit_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"constructor.");
diag_no_explicit_copy_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"copy constructor.");
diag_inline_complex_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex constructor has an inlined body.");
// Messages for destructors.
diag_no_explicit_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"destructor.");
diag_inline_complex_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex destructor has an inline body.");
// Messages for refcounted objects.
diag_refcounted_needs_explicit_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted should have explicit "
"destructors that are declared protected or private.");
diag_refcounted_with_public_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted should have "
"destructors that are declared protected or private.");
diag_refcounted_with_protected_non_virtual_dtor_ =
diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted and have non-private "
"destructors should declare their destructor virtual.");
// Miscellaneous messages.
diag_weak_ptr_factory_order_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] WeakPtrFactory members which refer to their outer "
"class must be the last member in the outer class definition.");
diag_bad_enum_max_value_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] kMaxValue enumerator does not match max value %0 of "
"other enumerators");
diag_enum_max_value_unique_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] kMaxValue enumerator should not have a unique value: "
"it should share the value of the highest enumerator");
diag_auto_deduced_to_a_pointer_type_ =
diagnostic().getCustomDiagID(getErrorLevel(),
"[chromium-style] auto variable type "
"must not deduce to a raw pointer "
"type.");
// Registers notes to make it easier to interpret warnings.
diag_note_inheritance_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note, "[chromium-style] %0 inherits from %1 here");
diag_note_implicit_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] No explicit destructor for %0 defined");
diag_note_public_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] Public destructor declared here");
diag_note_protected_non_virtual_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] Protected non-virtual destructor declared here");
diag_span_from_string_literal_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] span construction from string literal is problematic.");
diag_note_span_from_string_literal1_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"To make a span from a string literal, use:\n"
" * base::span_from_cstring() to make a span without the NUL "
"terminator\n"
" * base::span_with_nul_from_cstring() to make a span with the NUL "
"terminator\n"
" * a string view type instead of a string literal");
}
void FindBadConstructsConsumer::Traverse(ASTContext& context) {
if (ipc_visitor_) {
ipc_visitor_->set_context(&context);
ParseFunctionTemplates(context.getTranslationUnitDecl());
}
if (layout_visitor_) {
llvm::TimeTraceScope TimeScope(
"VisitLayoutObjectMethods in "
"FindBadConstructsConsumer::Traverse");
layout_visitor_->VisitLayoutObjectMethods(context);
}
{
llvm::TimeTraceScope TimeScope(
"TraverseDecl in FindBadConstructsConsumer::Traverse");
RecursiveASTVisitor::TraverseDecl(context.getTranslationUnitDecl());
}
if (ipc_visitor_) {
ipc_visitor_->set_context(nullptr);
}
}
bool FindBadConstructsConsumer::TraverseDecl(Decl* decl) {
if (ipc_visitor_) {
ipc_visitor_->BeginDecl(decl);
}
bool result = RecursiveASTVisitor::TraverseDecl(decl);
if (ipc_visitor_) {
ipc_visitor_->EndDecl();
}
return result;
}
bool FindBadConstructsConsumer::VisitCXXConstructExpr(
clang::CXXConstructExpr* expr) {
if (options_.span_ctor_from_string_literal) {
CheckConstructingSpanFromStringLiteral(
expr->getConstructor(),
llvm::ArrayRef(expr->getArgs(), expr->getNumArgs()),
expr->getExprLoc());
}
return true;
}
bool FindBadConstructsConsumer::VisitCXXRecordDecl(
clang::CXXRecordDecl* cxx_record_decl) {
if (stack_allocated_checker_) {
stack_allocated_checker_->Check(cxx_record_decl);
}
return true;
}
bool FindBadConstructsConsumer::VisitEnumDecl(clang::EnumDecl* decl) {
CheckEnumMaxValue(decl);
return true;
}
bool FindBadConstructsConsumer::VisitTagDecl(clang::TagDecl* tag_decl) {
if (tag_decl->isCompleteDefinition()) {
CheckTag(tag_decl);
}
return true;
}
bool FindBadConstructsConsumer::VisitTemplateSpecializationType(
TemplateSpecializationType* spec) {
if (ipc_visitor_) {
ipc_visitor_->VisitTemplateSpecializationType(spec);
}
return true;
}
bool FindBadConstructsConsumer::VisitCallExpr(CallExpr* call_expr) {
if (ipc_visitor_) {
ipc_visitor_->VisitCallExpr(call_expr);
}
return true;
}
bool FindBadConstructsConsumer::VisitVarDecl(clang::VarDecl* var_decl) {
CheckDeducedAutoPointer(var_decl);
return true;
}
void FindBadConstructsConsumer::CheckChromeClass(LocationType location_type,
SourceLocation record_location,
CXXRecordDecl* record) {
bool implementation_file = InImplementationFile(record_location);
if (!implementation_file) {
// Only check for "heavy" constructors/destructors in header files;
// within implementation files, there is no performance cost.
// If this is a POD or a class template or a type dependent on a
// templated class, assume there's no ctor/dtor/virtual method
// optimization that we should do.
if (!IsPodOrTemplateType(*record)) {
CheckCtorDtorWeight(record_location, record);
}
}
bool warn_on_inline_bodies = !implementation_file;
// Check that all virtual methods are annotated with override or final.
// Note this could also apply to templates, but for some reason Clang
// does not always see the "override", so we get false positives.
// See http://llvm.org/bugs/show_bug.cgi?id=18440 and
// http://llvm.org/bugs/show_bug.cgi?id=21942
if (!IsPodOrTemplateType(*record)) {
CheckVirtualMethods(record_location, record, warn_on_inline_bodies);
}
// TODO(dcheng): This is needed because some of the diagnostics for refcounted
// classes use DiagnosticsEngine::Report() directly, and there are existing
// violations in Blink. This should be removed once the checks are
// modularized.
if (location_type != LocationType::kBlink) {
CheckRefCountedDtors(record_location, record);
}
if (blink_data_member_type_checker_ &&
location_type == LocationType::kBlink) {
blink_data_member_type_checker_->CheckClass(record_location, record);
}
CheckWeakPtrFactoryMembers(record_location, record);
}
void FindBadConstructsConsumer::CheckEnumMaxValue(EnumDecl* decl) {
if (!decl->isScoped()) {
return;
}
clang::EnumConstantDecl* max_value = nullptr;
std::set<clang::EnumConstantDecl*> max_enumerators;
llvm::APSInt max_seen;
for (clang::EnumConstantDecl* enumerator : decl->enumerators()) {
if (enumerator->getName() == "kMaxValue") {
max_value = enumerator;
}
llvm::APSInt current_value = enumerator->getInitVal();
if (max_enumerators.empty()) {
max_enumerators.emplace(enumerator);
max_seen = current_value;
continue;
}
assert(max_seen.isSigned() == current_value.isSigned());
if (current_value < max_seen) {
continue;
}
if (current_value == max_seen) {
max_enumerators.emplace(enumerator);
continue;
}
assert(current_value > max_seen);
max_enumerators.clear();
max_enumerators.emplace(enumerator);
max_seen = current_value;
}
if (!max_value) {
return;
}
if (max_enumerators.find(max_value) == max_enumerators.end()) {
ReportIfSpellingLocNotIgnored(max_value->getLocation(),
diag_bad_enum_max_value_)
<< toString(max_seen, 10);
} else if (max_enumerators.size() < 2) {
ReportIfSpellingLocNotIgnored(decl->getLocation(),
diag_enum_max_value_unique_);
}
}
void FindBadConstructsConsumer::CheckCtorDtorWeight(
SourceLocation record_location,
CXXRecordDecl* record) {
// We don't handle anonymous structs. If this record doesn't have a
// name, it's of the form:
//
// struct {
// ...
// } name_;
if (record->getIdentifier() == NULL) {
return;
}
// We don't handle unions.
if (record->isUnion()) {
return;
}
// Skip records that derive from ignored base classes.
if (HasIgnoredBases(record)) {
return;
}
// Count the number of templated base classes as a feature of whether the
// destructor can be inlined.
int templated_base_classes = 0;
for (CXXRecordDecl::base_class_const_iterator it = record->bases_begin();
it != record->bases_end(); ++it) {
if (it->getTypeSourceInfo()->getTypeLoc().getTypeLocClass() ==
TypeLoc::TemplateSpecialization) {
++templated_base_classes;
}
}
// Count the number of trivial and non-trivial member variables.
int trivial_member = 0;
int non_trivial_member = 0;
int templated_non_trivial_member = 0;
for (RecordDecl::field_iterator it = record->field_begin();
it != record->field_end(); ++it) {
switch (ClassifyType(it->getType().getTypePtr())) {
case TypeClassification::kTrivial:
trivial_member += 1;
break;
case TypeClassification::kNonTrivial:
non_trivial_member += 1;
break;
case TypeClassification::kTrivialTemplate:
trivial_member += 1;
break;
case TypeClassification::kNonTrivialTemplate:
templated_non_trivial_member += 1;
break;
case TypeClassification::kNonTrivialExternTemplate:
non_trivial_member += 1;
break;
}
}
// Check to see if we need to ban inlined/synthesized constructors. Note
// that the cutoffs here are kind of arbitrary. Scores over 10 break.
int dtor_score = 0;
// Deriving from a templated base class shouldn't be enough to trigger
// the ctor warning, but if you do *anything* else, it should.
//
// TODO(erg): This is motivated by templated base classes that don't have
// any data members. Somehow detect when templated base classes have data
// members and treat them differently.
dtor_score += templated_base_classes * 9;
// Instantiating a template is an insta-hit.
dtor_score += templated_non_trivial_member * 10;
// The fourth normal class member should trigger the warning.
dtor_score += non_trivial_member * 3;
int ctor_score = dtor_score;
// You should be able to have 9 ints before we warn you.
ctor_score += trivial_member;
if (ctor_score >= 10) {
if (!record->hasUserDeclaredConstructor()) {
ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_ctor_);
} else {
// Iterate across all the constructors in this file and yell if we
// find one that tries to be inline.
for (CXXRecordDecl::ctor_iterator it = record->ctor_begin();
it != record->ctor_end(); ++it) {
// The current check is buggy in C++20 (but was more correct in C++14).
// An implicit copy constructor does not have an inline body, so this
// check never fires for classes with a user-declared out-of-line
// constructor.
if (it->hasInlineBody()) {
if (it->isCopyConstructor() &&
!record->hasUserDeclaredCopyConstructor()) {
// In general, implicit constructors are generated on demand. But
// in the Windows component build, dllexport causes instantiation of
// the copy constructor which means that this fires on many more
// classes. For now, suppress this on dllexported classes.
// (This does mean that windows component builds will not emit this
// warning in some cases where it is emitted in other configs, but
// that's the better tradeoff at this point).
// TODO(dcheng): With the RecursiveASTVisitor, these warnings might
// be emitted on other platforms too, reevaluate if we want to keep
// suppressing this then http://crbug.com/467288
if (!record->hasAttr<DLLExportAttr>()) {
ReportIfSpellingLocNotIgnored(record_location,
diag_no_explicit_copy_ctor_);
}
} else {
// See the comment in the previous branch about copy constructors.
// This does the same for implicit move constructors.
bool is_likely_compiler_generated_dllexport_move_ctor =
it->isMoveConstructor() &&
!record->hasUserDeclaredMoveConstructor() &&
record->hasAttr<DLLExportAttr>();
if (!is_likely_compiler_generated_dllexport_move_ctor) {
ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
diag_inline_complex_ctor_);
}
}
} else if (it->isInlined() && !it->isInlineSpecified() &&
!it->isDeleted() &&
(!it->isCopyOrMoveConstructor() ||
it->isExplicitlyDefaulted())) {
// isInlined() is a more reliable check than hasInlineBody(), but
// unfortunately, it results in warnings for implicit copy/move
// constructors in the previously mentioned situation. To preserve
// compatibility with existing Chromium code, only warn if it's an
// explicitly defaulted copy or move constructor.
ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
diag_inline_complex_ctor_);
}
}
}
}
// The destructor side is equivalent except that we don't check for
// trivial members; 20 ints don't need a destructor.
if (dtor_score >= 10 && !record->hasTrivialDestructor()) {
if (!record->hasUserDeclaredDestructor()) {
ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_dtor_);
} else if (CXXDestructorDecl* dtor = record->getDestructor()) {
if (dtor->isInlined() && !dtor->isInlineSpecified() &&
!dtor->isDeleted()) {
ReportIfSpellingLocNotIgnored(dtor->getInnerLocStart(),
diag_inline_complex_dtor_);
}
}
}
}
SuppressibleDiagnosticBuilder
FindBadConstructsConsumer::ReportIfSpellingLocNotIgnored(
SourceLocation loc,
unsigned diagnostic_id) {
LocationType type =
ClassifyLocation(instance().getSourceManager().getSpellingLoc(loc));
bool ignored = type == LocationType::kThirdParty;
if (type == LocationType::kBlink) {
if (diagnostic_id == diag_no_explicit_ctor_ ||
diagnostic_id == diag_no_explicit_copy_ctor_ ||
diagnostic_id == diag_inline_complex_ctor_ ||
diagnostic_id == diag_no_explicit_dtor_ ||
diagnostic_id == diag_inline_complex_dtor_ ||
diagnostic_id == diag_refcounted_with_protected_non_virtual_dtor_ ||
diagnostic_id == diag_virtual_with_inline_body_) {
// Certain checks are ignored in Blink for historical reasons.
// TODO(dcheng): Make this list smaller.
ignored = true;
}
}
return SuppressibleDiagnosticBuilder(&diagnostic(), loc, diagnostic_id,
ignored);
}
// Checks that virtual methods are correctly annotated, and have no body in a
// header file.
void FindBadConstructsConsumer::CheckVirtualMethods(
SourceLocation record_location,
CXXRecordDecl* record,
bool warn_on_inline_bodies) {
if (IsGmockObject(record)) {
warn_on_inline_bodies = false;
}
for (CXXRecordDecl::method_iterator it = record->method_begin();
it != record->method_end(); ++it) {
if (it->isCopyAssignmentOperator() || isa<CXXConstructorDecl>(*it)) {
// Ignore constructors and assignment operators.
} else if (isa<CXXDestructorDecl>(*it) &&
!record->hasUserDeclaredDestructor()) {
// Ignore non-user-declared destructors.
} else if (!it->isVirtual()) {
continue;
} else {
CheckVirtualSpecifiers(*it);
if (warn_on_inline_bodies) {
CheckVirtualBodies(*it);
}
}
}
}
// Makes sure that virtual methods use the most appropriate specifier. If a
// virtual method overrides a method from a base class, only the override
// specifier should be used. If the method should not be overridden by derived
// classes, only the final specifier should be used.
void FindBadConstructsConsumer::CheckVirtualSpecifiers(
const CXXMethodDecl* method) {
bool is_override = method->size_overridden_methods() > 0;
bool has_virtual = method->isVirtualAsWritten();
OverrideAttr* override_attr = method->getAttr<OverrideAttr>();
FinalAttr* final_attr = method->getAttr<FinalAttr>();
if (IsMethodInTestingNamespace(method)) {
return;
}
SourceManager& manager = instance().getSourceManager();
const LangOptions& lang_opts = instance().getLangOpts();
// Grab the stream of tokens from the beginning of the method
bool remove_virtual = false;
bool add_override = false;
// Complain if a method is annotated virtual && (override || final).
if (has_virtual && (override_attr || final_attr)) {
remove_virtual = true;
}
// Complain if a method is an override and is not annotated with override or
// final.
if (is_override && !override_attr && !final_attr) {
add_override = true;
// Also remove the virtual in the same fixit if currently present.
if (has_virtual) {
remove_virtual = true;
}
}
if (final_attr && override_attr) {
ReportIfSpellingLocNotIgnored(override_attr->getLocation(),
diag_redundant_virtual_specifier_)
<< override_attr << final_attr
<< FixItHint::CreateRemoval(override_attr->getRange());
}
if (!remove_virtual && !add_override) {
return;
}
// Deletion of virtual and insertion of override are tricky. The AST does not
// expose the location of `virtual` or `=`: the former is useful when trying
// to remove `virtual, while the latter is useful when trying to insert
// `override`. Iterate over the tokens from |method->getBeginLoc()| until:
// 1. A `{` not nested inside parentheses is found or
// 2. A `=` not nested inside parentheses is found or
// 3. A `;` not nested inside parentheses is found or
// 4. The end of the file is found.
SourceLocation virtual_loc;
SourceLocation override_insertion_loc;
// Attempt to set up the lexer in raw mode.
std::pair<FileID, unsigned> decomposed_start =
manager.getDecomposedLoc(method->getBeginLoc());
bool invalid = false;
StringRef buffer = manager.getBufferData(decomposed_start.first, &invalid);
if (!invalid) {
int nested_parentheses = 0;
Lexer lexer(manager.getLocForStartOfFile(decomposed_start.first), lang_opts,
buffer.begin(), buffer.begin() + decomposed_start.second,
buffer.end());
Token token;
while (!lexer.LexFromRawLexer(token)) {
// Found '=', ';', or '{'. No need to scan any further, since an override
// fixit hint won't be inserted after any of these tokens.
if ((token.is(tok::equal) || token.is(tok::semi) ||
token.is(tok::l_brace)) &&
nested_parentheses == 0) {
override_insertion_loc = token.getLocation();
break;
}
if (token.is(tok::l_paren)) {
++nested_parentheses;
} else if (token.is(tok::r_paren)) {
--nested_parentheses;
} else if (token.is(tok::raw_identifier)) {
// TODO(dcheng): Unclear if this needs to check for nested parentheses
// as well?
if (token.getRawIdentifier() == "virtual") {
virtual_loc = token.getLocation();
}
}
}
}
if (add_override && override_insertion_loc.isValid()) {
ReportIfSpellingLocNotIgnored(override_insertion_loc,
diag_method_requires_override_)
<< FixItHint::CreateInsertion(override_insertion_loc, " override");
}
if (remove_virtual && virtual_loc.isValid()) {
ReportIfSpellingLocNotIgnored(
virtual_loc, add_override ? diag_will_be_redundant_virtual_specifier_
: diag_redundant_virtual_specifier_)
<< "'virtual'"
// Slightly subtle: the else case handles both the currently and the
// will be redundant case for override. Doing the check this way also
// lets the plugin prioritize keeping 'final' over 'override' when both
// are present.
<< (final_attr ? "'final'" : "'override'")
<< FixItHint::CreateRemoval(
CharSourceRange::getTokenRange(SourceRange(virtual_loc)));
}
}
void FindBadConstructsConsumer::CheckVirtualBodies(
const CXXMethodDecl* method) {
// Virtual methods should not have inline definitions beyond "{}". This
// only matters for header files.
if (method->hasBody() && method->hasInlineBody()) {
if (CompoundStmt* cs = dyn_cast<CompoundStmt>(method->getBody())) {
if (cs->size()) {
SourceLocation loc = cs->getLBracLoc();
// CR_BEGIN_MSG_MAP_EX and BEGIN_SAFE_MSG_MAP_EX try to be compatible
// to BEGIN_MSG_MAP(_EX). So even though they are in chrome code,
// we can't easily fix them, so explicitly allowlist them here.
bool emit = true;
if (loc.isMacroID()) {
SourceManager& manager = instance().getSourceManager();
LocationType type = ClassifyLocation(manager.getSpellingLoc(loc));
if (type == LocationType::kThirdParty ||
type == LocationType::kBlink) {
emit = false;
} else {
StringRef name = Lexer::getImmediateMacroName(
loc, manager, instance().getLangOpts());
if (name == "CR_BEGIN_MSG_MAP_EX" ||
name == "BEGIN_SAFE_MSG_MAP_EX") {
emit = false;
}
}
}
if (emit) {
ReportIfSpellingLocNotIgnored(loc, diag_virtual_with_inline_body_);
}
}
}
}
}
FindBadConstructsConsumer::TypeClassification
FindBadConstructsConsumer::ClassifyType(const Type* type) {
switch (type->getTypeClass()) {
case Type::Record: {
auto* record_decl = type->getAsCXXRecordDecl();
// Simplifying; the whole class isn't trivial if the dtor is, but
// we use this as a signal about complexity.
// Note that if a record doesn't have a definition, it doesn't matter how
// it's counted, since the translation unit will fail to build. In that
// case, just count it as a trivial member to avoid emitting warnings that
// might be spurious.
if (!record_decl->hasDefinition() ||
record_decl->hasTrivialDestructor()) {
return TypeClassification::kTrivial;
}
// `std::basic_string` is externed by libc++, so even though it's a
// non-trivial type wrapped by a template, we shouldn't classify it as a
// `kNonTrivialTemplate`. The `kNonTrivialExternTemplate` classification
// exists for this purpose.
// https://github.com/llvm-mirror/libcxx/blob/78d6a7767ed57b50122a161b91f59f19c9bd0d19/include/string#L4317
if (hasName(record_decl, "std", "basic_string")) {
return TypeClassification::kNonTrivialExternTemplate;
}
// `base::raw_ptr` and `base::raw_ref` are non-trivial if the
// `use_backup_ref_ptr` flag is enabled, and trivial otherwise. Since
// there are many existing types using this that we don't wish to burden
// with defining custom ctors/dtors, and we'd rather not vary on
// triviality by build config, treat this as always trivial.
if (hasName(record_decl, "base", "raw_ptr") ||
(options_.raw_ref_template_as_trivial_member &&
hasName(record_decl, "base", "raw_ref"))) {
return TypeClassification::kTrivialTemplate;
}
return TypeClassification::kNonTrivial;
}
case Type::TemplateSpecialization: {
// A "Template Specialization" is a type produced by providing arguments
// to any type template, not necessarily just a template which has
// explicitly declared specializations. This may be a regular type
// template, or a templated type alias.
//
// A great way to reason about templates is as a compile-time function
// taking compile-time arguments, and producing a regular type. In the
// context of a `TemplateSpecializationType`, we're referring to this
// particular invocation of that function. We can "desugar" that into the
// produced type, which is no longer seen as a template.
//
// Types produced by templates are of particular concern here, since they
// almost certainly have inline ctors/dtors and may result in lots of code
// being generated for types containing them. For that reason, non-trivial
// templates are weighted higher than regular non-trivial types.
auto* template_type = dyn_cast<TemplateSpecializationType>(type);
// If this is a template type alias, just consider the underlying type
// without the context of it being a template.
// For an example:
//
// template <typename T>
// using Foo = Bar<T>;
//
// Given `Foo<Baz>`, we want to classify it simply as `Bar<Baz>` would be.
if (template_type->isTypeAlias()) {
return ClassifyType(template_type->getAliasedType().getTypePtr());
}
// Otherwise, classify the type produced by the template and apply the
// corresponding template classification. For an example:
//
// template <typename T>
// struct Foo { ... };
//
// Given `Foo<Baz>`, classify `struct Foo { ... };` with `Baz` substituted
// for `T`;
const auto classification =
ClassifyType(template_type->desugar().getTypePtr());
if (classification == TypeClassification::kTrivial) {
return TypeClassification::kTrivialTemplate;
}
if (classification == TypeClassification::kNonTrivial) {
return TypeClassification::kNonTrivialTemplate;
}
return classification;
}
case Type::SubstTemplateTypeParm: {
// `SubstTemplateTypeParmType` appears wherever a template type parameter
// is encountered, and may be desugared into the type argument given to
// the template. For example:
//
// template <typename T>
// struct Foo {
// T bar; // <-- `bar` here is a `SubstTemplateTypeParmType`
// };
//
// or
//
// template <typename T>
// using Foo = T; // <-- `T` here is a `SubstTemplateTypeParmType`
const auto* const subst_type = dyn_cast<SubstTemplateTypeParmType>(type)
->getReplacementType()
.getTypePtr();
return ClassifyType(subst_type);
}
case Type::Elaborated: {
// Quote from the LLVM documentation:
// "Represents a type that was referred to using an elaborated type
// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, or
// both. This type is used to keep track of a type name as written in the
// source code, including tag keywords and any nested-name-specifiers. The
// type itself is always "sugar", used to express what was written in the
// source code but containing no additional semantic information."
return ClassifyType(
dyn_cast<ElaboratedType>(type)->getNamedType().getTypePtr());
}
case Type::Typedef: {
// A "typedef type" is the representation of a type named through a
// typedef (or a C++11 type alias). In this case, we don't care about the
// typedef itself, so we desugar it into the underlying type and classify
// that.
const auto* const decl = dyn_cast<TypedefType>(type)->getDecl();
return ClassifyType(decl->getUnderlyingType().getTypePtr());
}
default: {
// Stupid assumption: anything we see that isn't the above is a POD
// or reference type.
return TypeClassification::kTrivial;
}
}
}
// Check |record| for issues that are problematic for ref-counted types.
// Note that |record| may not be a ref-counted type, but a base class for
// a type that is.
// If there are issues, update |loc| with the SourceLocation of the issue
// and returns appropriately, or returns None if there are no issues.
// static
FindBadConstructsConsumer::RefcountIssue
FindBadConstructsConsumer::CheckRecordForRefcountIssue(
const CXXRecordDecl* record,
SourceLocation& loc) {
if (!record->hasUserDeclaredDestructor()) {
loc = record->getLocation();
return ImplicitDestructor;
}
if (CXXDestructorDecl* dtor = record->getDestructor()) {
if (dtor->getAccess() == AS_public) {
loc = dtor->getInnerLocStart();
return PublicDestructor;
}
}
return None;
}
// Returns true if |base| specifies one of the Chromium reference counted
// classes (base::RefCounted / base::RefCountedThreadSafe).
bool FindBadConstructsConsumer::IsRefCounted(const CXXBaseSpecifier* base,
CXXBasePath& path) {
const TemplateSpecializationType* base_type =
dyn_cast<TemplateSpecializationType>(
UnwrapType(base->getType().getTypePtr()));
if (!base_type) {
// Base-most definition is not a template, so this cannot derive from
// base::RefCounted. However, it may still be possible to use with a
// scoped_refptr<> and support ref-counting, so this is not a perfect
// guarantee of safety.
return false;
}
TemplateName name = base_type->getTemplateName();
if (TemplateDecl* decl = name.getAsTemplateDecl()) {
std::string base_name = decl->getNameAsString();
// Check for both base::RefCounted and base::RefCountedThreadSafe.
if (base_name.compare(0, 10, "RefCounted") == 0 &&
GetNamespace(decl) == "base") {
return true;
}
}
return false;
}
// Returns true if |base| specifies a class that has a public destructor,
// either explicitly or implicitly.
// static
bool FindBadConstructsConsumer::HasPublicDtorCallback(
const CXXBaseSpecifier* base,
CXXBasePath& path,
void* user_data) {
// Only examine paths that have public inheritance, as they are the
// only ones which will result in the destructor potentially being
// exposed. This check is largely redundant, as Chromium code should be
// exclusively using public inheritance.
if (path.Access != AS_public) {
return false;
}
CXXRecordDecl* record =
dyn_cast<CXXRecordDecl>(base->getType()->getAs<RecordType>()->getDecl());
SourceLocation unused;
return None != CheckRecordForRefcountIssue(record, unused);
}
// Outputs a C++ inheritance chain as a diagnostic aid.
void FindBadConstructsConsumer::PrintInheritanceChain(const CXXBasePath& path) {
for (CXXBasePath::const_iterator it = path.begin(); it != path.end(); ++it) {
diagnostic().Report(it->Base->getBeginLoc(), diag_note_inheritance_)
<< it->Class << it->Base->getType();
}
}
unsigned FindBadConstructsConsumer::DiagnosticForIssue(RefcountIssue issue) {
switch (issue) {
case ImplicitDestructor:
return diag_refcounted_needs_explicit_dtor_;
case PublicDestructor:
return diag_refcounted_with_public_dtor_;
case None:
assert(false && "Do not call DiagnosticForIssue with issue None");
return 0;
}
assert(false);
return 0;
}
// Check |record| to determine if it has any problematic refcounting
// issues and, if so, print them as warnings/errors based on the current
// value of getErrorLevel().
//
// If |record| is a C++ class, and if it inherits from one of the Chromium
// ref-counting classes (base::RefCounted / base::RefCountedThreadSafe),
// ensure that there are no public destructors in the class hierarchy. This
// is to guard against accidentally stack-allocating a RefCounted class or
// sticking it in a non-ref-counted container (like std::unique_ptr<>).
void FindBadConstructsConsumer::CheckRefCountedDtors(
SourceLocation record_location,
CXXRecordDecl* record) {
// Skip anonymous structs.
if (record->getIdentifier() == NULL) {
return;
}
// Determine if the current type is even ref-counted.
CXXBasePaths refcounted_path;
if (!record->lookupInBases(
[this](const CXXBaseSpecifier* base, CXXBasePath& path) {
return IsRefCounted(base, path);
},
refcounted_path)) {
return; // Class does not derive from a ref-counted base class.
}
// Easy check: Check to see if the current type is problematic.
SourceLocation loc;
RefcountIssue issue = CheckRecordForRefcountIssue(record, loc);
if (issue != None) {
diagnostic().Report(loc, DiagnosticForIssue(issue));
PrintInheritanceChain(refcounted_path.front());
return;
}
if (CXXDestructorDecl* dtor =
refcounted_path.begin()->back().Class->getDestructor()) {
if (dtor->getAccess() == AS_protected && !dtor->isVirtual()) {
loc = dtor->getInnerLocStart();
ReportIfSpellingLocNotIgnored(
loc, diag_refcounted_with_protected_non_virtual_dtor_);
return;
}
}
// Long check: Check all possible base classes for problematic
// destructors. This checks for situations involving multiple
// inheritance, where the ref-counted class may be implementing an
// interface that has a public or implicit destructor.
//
// struct SomeInterface {
// virtual void DoFoo();
// };
//
// struct RefCountedInterface
// : public base::RefCounted<RefCountedInterface>,
// public SomeInterface {
// private:
// friend class base::Refcounted<RefCountedInterface>;
// virtual ~RefCountedInterface() {}
// };
//
// While RefCountedInterface is "safe", in that its destructor is
// private, it's possible to do the following "unsafe" code:
// scoped_refptr<RefCountedInterface> some_class(
// new RefCountedInterface);
// // Calls SomeInterface::~SomeInterface(), which is unsafe.
// delete static_cast<SomeInterface*>(some_class.get());
if (!options_.check_base_classes) {
return;
}
// Find all public destructors. This will record the class hierarchy
// that leads to the public destructor in |dtor_paths|.
CXXBasePaths dtor_paths;
if (!record->lookupInBases(
[](const CXXBaseSpecifier* base, CXXBasePath& path) {
// TODO(thakis): Inline HasPublicDtorCallback() after clang roll.
return HasPublicDtorCallback(base, path, nullptr);
},
dtor_paths)) {
return;
}
for (CXXBasePaths::const_paths_iterator it = dtor_paths.begin();
it != dtor_paths.end(); ++it) {
// The record with the problem will always be the last record
// in the path, since it is the record that stopped the search.
const CXXRecordDecl* problem_record = dyn_cast<CXXRecordDecl>(
it->back().Base->getType()->getAs<RecordType>()->getDecl());
issue = CheckRecordForRefcountIssue(problem_record, loc);
if (issue == ImplicitDestructor) {
diagnostic().Report(record_location,
diag_refcounted_needs_explicit_dtor_);
PrintInheritanceChain(refcounted_path.front());
diagnostic().Report(loc, diag_note_implicit_dtor_) << problem_record;
PrintInheritanceChain(*it);
} else if (issue == PublicDestructor) {
diagnostic().Report(record_location, diag_refcounted_with_public_dtor_);
PrintInheritanceChain(refcounted_path.front());
diagnostic().Report(loc, diag_note_public_dtor_);
PrintInheritanceChain(*it);
}
}
}
// Check for any problems with WeakPtrFactory class members. This currently
// only checks that any WeakPtrFactory<T> member of T appears as the last
// data member in T. We could consider checking for bad uses of
// WeakPtrFactory to refer to other data members, but that would require
// looking at the initializer list in constructors to see what the factory
// points to.
// Note, if we later add other unrelated checks of data members, we should
// consider collapsing them in to one loop to avoid iterating over the data
// members more than once.
void FindBadConstructsConsumer::CheckWeakPtrFactoryMembers(
SourceLocation record_location,
CXXRecordDecl* record) {
// Skip anonymous structs.
if (record->getIdentifier() == NULL) {
return;
}
// Iterate through members of the class.
RecordDecl::field_iterator iter(record->field_begin()),
the_end(record->field_end());
SourceLocation weak_ptr_factory_location; // Invalid initially.
for (; iter != the_end; ++iter) {
const TemplateSpecializationType* template_spec_type =
iter->getType().getTypePtr()->getAs<TemplateSpecializationType>();
bool param_is_weak_ptr_factory_to_self = false;
if (template_spec_type) {
const TemplateDecl* template_decl =
template_spec_type->getTemplateName().getAsTemplateDecl();
if (template_decl &&
template_spec_type->template_arguments().size() == 1) {
if (template_decl->getNameAsString().compare("WeakPtrFactory") == 0 &&
GetNamespace(template_decl) == "base") {
// Only consider WeakPtrFactory members which are specialized for the
// owning class.
const TemplateArgument& arg =
template_spec_type->template_arguments()[0];
if (arg.getAsType().getTypePtr()->getAsCXXRecordDecl() ==
record->getTypeForDecl()->getAsCXXRecordDecl()) {
if (!weak_ptr_factory_location.isValid()) {
// Save the first matching WeakPtrFactory member for the
// diagnostic.
weak_ptr_factory_location = iter->getLocation();
}
param_is_weak_ptr_factory_to_self = true;
}
}
}
}
// If we've already seen a WeakPtrFactory<OwningType> and this param is not
// one of those, it means there is at least one member after a factory.
if (weak_ptr_factory_location.isValid() &&
!param_is_weak_ptr_factory_to_self) {
ReportIfSpellingLocNotIgnored(weak_ptr_factory_location,
diag_weak_ptr_factory_order_);
}
}
}
// Copied from BlinkGCPlugin, see crrev.com/1135333007
void FindBadConstructsConsumer::ParseFunctionTemplates(
TranslationUnitDecl* decl) {
if (!instance().getLangOpts().DelayedTemplateParsing) {
return; // Nothing to do.
}
std::set<FunctionDecl*> late_parsed_decls = GetLateParsedFunctionDecls(decl);
clang::Sema& sema = instance().getSema();
for (const FunctionDecl* fd : late_parsed_decls) {
assert(fd->isLateTemplateParsed());
if (instance().getSourceManager().isInSystemHeader(
instance().getSourceManager().getSpellingLoc(fd->getLocation()))) {
continue;
}
// Parse and build AST for yet-uninstantiated template functions.
clang::LateParsedTemplate* lpt = sema.LateParsedTemplateMap[fd].get();
sema.LateTemplateParser(sema.OpaqueParser, *lpt);
}
}
// Check whether auto deduces to a raw pointer.
void FindBadConstructsConsumer::CheckDeducedAutoPointer(
clang::VarDecl* var_decl) {
// Lambda init-captures should be ignored.
if (var_decl->isInitCapture()) {
return;
}
QualType qualtype = var_decl->getType().getNonReferenceType();
// Dependent types in templates can not be fully deduced as they depend on
// what the template parameter will be. They result in a 'null' deduced_type
// later. To catch this would require looking at each instantiation but then
// we could get inconsistent errors for some instantiations and not others.
if (qualtype->isDependentType()) {
return;
}
// Find the `clang::AutoType` which may be inside a `PointerType`. Since
// `AutoType` is 'sugar', care must be taken to not skip over it.
const clang::AutoType* auto_type = nullptr;
while (!auto_type) {
// We need to look for AutoType before looking for PointerType, or we will
// skip right past it, since AutoType is 'sugar'.
auto_type = qualtype->getAs<clang::AutoType>();
// If we have a type `auto*` then the pointer needs to be pulled off before
// we can find the AutoType. If we're not at a pointer, then stop searching
// for AutoType.
if (auto* ptr_type = qualtype->getAs<clang::PointerType>()) {
qualtype = ptr_type->getPointeeType();
} else {
break;
}
}
if (!auto_type) {
return;
}
// If not deduced yet, we can't tell if we require `auto*`.
if (!auto_type->isDeduced()) {
return;
}
// `Concept auto x` should be allowed even if the Concept matches to a pointer
// type.
if (auto_type->isConstrained()) {
return;
}
QualType deduced_type = auto_type->getDeducedType();
// `AutoType` can contain further nested `AutoType`s, so we need to walk
// through them all.
while (auto* inner_auto = deduced_type->getAs<clang::AutoType>()) {
deduced_type = inner_auto->getDeducedType();
}
// If `auto` resolves to a function pointer, it's always allowed.
if (deduced_type.getCanonicalType()->isFunctionPointerType()) {
return;
}
// Elaborated types wrap the type that we're interested in, so we need to
// step through them. Inside, there may be a template param type, a pointer
// type, etc. For example, this function returns an ElaboratedType, which
// has a pointer inside. But has additional sugar around the pointer that
// we want to examine first.
// ```
// template <class T>
// AliasOfT<T> auto_function_return_elaborated_alias_with_ptr() { ... }
// ```
if (auto* elaborated = deduced_type->getAs<clang::ElaboratedType>()) {
deduced_type = elaborated->getNamedType();
}
// If the `auto` resolves to a type that comes from a template parameter, the
// input type may have been a type alias and we can't tell how the type was
// actually spelt, so just allow it. This handles the return type of
// std::find() for example.
if (deduced_type->getAs<clang::SubstTemplateTypeParmType>()) {
return;
}
// If `auto` resolves to a type alias, it's allowed, even if there's a pointer
// inside the alias, which would be an implementation detail of the alias
// type. This includes stdlib iterator aliases.
if (deduced_type->getAs<clang::TypedefType>()) {
return;
}
// It's also possible to resolve to a template specialization of a type alias,
// in which the same applies as for TypedefType.
if (auto* spec = deduced_type->getAs<clang::TemplateSpecializationType>()) {
if (spec->isTypeAlias()) {
return;
}
}
// Last, if it's not a pointer at all then `auto` is allowed. This comes last
// because `getAs()` will jump past 'sugar' in the type, so we need to look
// for other things before jumping past them to the PointerType.
if (!deduced_type->getAs<clang::PointerType>()) {
return;
}
// Check if we should even be considering this type. This is the most
// expensive check, so we check this last.
LocationType location_type = ClassifyLocation(var_decl->getBeginLoc());
// We don't generate errors in third-party code.
if (location_type == LocationType::kThirdParty) {
return;
}
// Report an error, the code should say `auto*` instead of `auto`.
//
// The range starts from |var_decl|'s loc start, which is the
// beginning of the full expression defining this |var_decl|. It
// ends, however, where this |var_decl|'s type loc ends, since
// that's the end of the type of |var_decl|.
// Note that the beginning source location of type loc omits cv
// qualifiers, which is why it's not a good candidate to use for the
// start of the range.
clang::SourceRange range(
var_decl->getBeginLoc(),
var_decl->getTypeSourceInfo()->getTypeLoc().getEndLoc());
ReportIfSpellingLocNotIgnored(range.getBegin(),
diag_auto_deduced_to_a_pointer_type_)
<< FixItHint::CreateReplacement(
range,
GetAutoReplacementTypeAsString(var_decl->getType(),
var_decl->getStorageClass(), true));
}
void FindBadConstructsConsumer::CheckConstructingSpanFromStringLiteral(
clang::CXXConstructorDecl* ctor_decl,
llvm::ArrayRef<const clang::Expr*> args,
clang::SourceLocation loc) {
auto* record_decl = clang::cast<clang::RecordDecl>(ctor_decl->getParent());
if (!hasName(record_decl, "base", "span")) {
return;
}
// Want the base::span(const char (&arr)[N]) constructor.
bool is_const_char_array_ctor = false;
if (ctor_decl->getNumParams() == 1u) {
clang::ParmVarDecl* param = ctor_decl->getParamDecl(0u);
const clang::Type* type = &*param->getType();
if (type->isReferenceType()) {
type = type->getPointeeType()->getUnqualifiedDesugaredType();
if (auto* array_type = clang::dyn_cast<clang::ConstantArrayType>(type)) {
const clang::Type* element_type =
array_type->getElementType()->getUnqualifiedDesugaredType();
if (element_type->isSpecificBuiltinType(
clang::BuiltinType::Kind::Char_S)) {
is_const_char_array_ctor = true;
}
}
}
}
if (!is_const_char_array_ctor) {
return;
}
if (args.size() != 1u) {
return;
}
// Find the expression that defines the argument value.
const clang::Expr* value_expr = args[0u];
if (auto* ref_expr = clang::dyn_cast<clang::DeclRefExpr>(args[0u])) {
const clang::VarDecl* var_decl =
clang::dyn_cast<clang::VarDecl>(ref_expr->getDecl());
if (var_decl) {
var_decl = var_decl->getInitializingDeclaration();
if (var_decl && var_decl->hasInit()) {
value_expr = var_decl->getInit();
}
}
}
value_expr = value_expr->IgnoreParens();
if (auto* lit_expr = clang::dyn_cast<clang::StringLiteral>(value_expr)) {
ReportIfSpellingLocNotIgnored(loc, diag_span_from_string_literal_);
ReportIfSpellingLocNotIgnored(loc, diag_note_span_from_string_literal1_);
}
}
} // namespace chrome_checker