chromium/tools/perf/core/tbmv3/trace_processor.py

# Copyright 2019 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.

import csv
import json
import logging
import os
import subprocess
import tempfile
import threading

from collections import namedtuple

from core.perfetto_binary_roller import binary_deps_manager
from py_utils import tempfile_ext
from tracing.value import histogram_set
from tracing.value.histogram import Histogram

TP_BINARY_NAME = 'trace_processor_shell'
EXPORT_JSON_QUERY_TEMPLATE = 'select export_json(%s)\n'
METRICS_PATH = os.path.realpath(
    os.path.join(os.path.dirname(__file__), 'metrics'))
POWER_PROFILE_SQL = 'power_profile.sql'

MetricFiles = namedtuple('MetricFiles', ('sql', 'proto', 'internal_metric'))


class InvalidTraceProcessorOutput(Exception):
  pass


# These will be set to respective paths once the files have been fetched
# to avoid downloading several times during one Results Processor run.
_fetched_trace_processor = None
_fetched_power_profile = None
_fetch_lock = threading.Lock()


def _SqlString(s):
  """Produce a valid SQL string constant."""
  return "'%s'" % s.replace("'", "''")


def _EnsureTraceProcessor(trace_processor_path):
  global _fetched_trace_processor

  if trace_processor_path is None:
    with _fetch_lock:
      if not _fetched_trace_processor:
        _fetched_trace_processor = binary_deps_manager.FetchHostBinary(
            TP_BINARY_NAME)
        logging.info('Trace processor binary downloaded to %s',
                     _fetched_trace_processor)
    trace_processor_path = _fetched_trace_processor

  if not os.path.isfile(trace_processor_path):
    raise RuntimeError("Can't find trace processor executable at %s" %
                       trace_processor_path)
  return trace_processor_path


def _EnsurePowerProfile():
  global _fetched_power_profile
  with _fetch_lock:
    if not _fetched_power_profile:
      _fetched_power_profile = binary_deps_manager.FetchDataFile(
          POWER_PROFILE_SQL)
      logging.info('Device power profiles downloaded to %s',
                   _fetched_power_profile)
  return _fetched_power_profile


def _RunTraceProcessor(*args):
  """Run trace processor shell with given command line arguments."""
  # Unset environment variables that are not needed for current trace processor
  # use cases, but, if set, can interfere with its execution.
  custom_environment = os.environ.copy()
  custom_environment.pop('PERFETTO_BINARY_PATH', None)
  custom_environment.pop('PERFETTO_SYMBOLIZER_MODE', None)
  p = subprocess.Popen(args,
                       stdout=subprocess.PIPE,
                       stderr=subprocess.PIPE,
                       env=custom_environment)
  stdout, stderr = p.communicate()
  stdout = stdout.decode('utf-8')
  stderr = stderr.decode('utf-8')
  if p.returncode == 0:
    return stdout
  raise RuntimeError(
      'Running trace processor failed. Command line:\n%s\nStderr:\n%s\n' %
      (' '.join(args), stderr))


def _CreateMetricFiles(metric_name):
  # Currently assuming all metric files live in tbmv3/metrics directory unless
  # the metrics are compiled into trace processor. We will revise this decision
  # later.
  sql_file = os.path.join(METRICS_PATH, metric_name + '.sql')
  proto_file = os.path.join(METRICS_PATH, metric_name + '.proto')
  internal_metric = False
  if not (os.path.isfile(sql_file) and os.path.isfile(proto_file)):
    # Metric files not found - metric may be compiled into trace processor.
    internal_metric = True
  return MetricFiles(sql=sql_file,
                     proto=proto_file,
                     internal_metric=internal_metric)


def _ScopedHistogramName(metric_name, histogram_name):
  """Returns scoped histogram name by preprending metric name.

  This is useful for avoiding histogram name collision. The '_metric' suffix of
  the metric name is dropped from scoped name. Example:
  _ScopedHistogramName("console_error_metric", "js_errors")
  => "console_error::js_errors"
  """
  metric_suffix = '_metric'
  suffix_length = len(metric_suffix)
  # TODO(crbug.com/40102479): Decide on whether metrics should always have
  # '_metric' suffix.
  if metric_name[-suffix_length:] == metric_suffix:
    scope = metric_name[:-suffix_length]
  else:
    scope = metric_name
  return '::'.join([scope, histogram_name])


class ProtoFieldInfo(object):

  def __init__(self, name, parent, repeated, field_options):
    self.name = name
    self.parent = parent
    self.repeated = repeated
    self.field_options = field_options

  @property
  def path_from_root(self):
    if self.parent is None:
      return [self]
    return self.parent.path_from_root + [self]

  def __repr__(self):
    return 'ProtoFieldInfo("%s", repeated=%s)' % (self.name, self.repeated)


def _LeafFieldAnnotations(annotations, parent=None):
  """Yields leaf fields in the annotations tree, yielding a proto field info

  each time. Given the following annotation:
  __annotations: {
    a: {
      __field_options: { },
      b: { __field_options: { unit: "count" }, __repeated: True },
      c: { __field_options: { unit: "ms" } }
    }
  }
  It yields:
  ProtoFieldInfo(name="b", parent=FieldInfoForA,
                 repeated=True, field_options={unit: "count"})
  ProtoFieldInfo(name="c", parent=FieldInfoForA,
                 repeated=False, field_options={unit: "ms"})

  """
  for (name, field_value) in annotations.items():
    if name[:2] == '__':
      continue  # internal fields.
    current_field = ProtoFieldInfo(
        name=name,
        parent=parent,
        repeated=field_value.get('__repeated', False),
        field_options=field_value.get('__field_options', {}))
    has_no_descendants = True
    for descendant in _LeafFieldAnnotations(field_value, current_field):
      has_no_descendants = False
      yield descendant
    if has_no_descendants:
      yield current_field


def _PluckField(json_dict, field_path):
  """Returns the values of fields matching field_path from json dict.

  Field path is a sequence of ProtoFieldInfo starting from the root dict. Arrays
  are flattened along the way. For exampe, consider the following json dict:
  {
    a: {
      b: [ { c: 24 }, { c: 25 } ],
      d: 42,
    }
  }
  Field path (a, d) returns [42]. Field_path (a, b, c) returns [24, 25].
  """
  if len(field_path) == 0:
    return [json_dict]
  path_head = field_path[0]
  path_tail = field_path[1:]

  if path_head.repeated:
    field_values = json_dict[path_head.name]
    if not isinstance(field_values, list):
      raise InvalidTraceProcessorOutput(
          'Field marked as repeated but json value is not list')
    output = []
    for field_value in field_values:
      output.extend(_PluckField(field_value, path_tail))
    return output
  field_value = json_dict[path_head.name]
  if isinstance(field_value, list):
    raise InvalidTraceProcessorOutput(
        'Field not marked as repeated but json value is list')
  return _PluckField(field_value, path_tail)


def RunQuery(trace_processor_path, trace_file, sql_command):
  """Run SQL query on trace using trace processor and return result.

  Args:
    trace_processor_path: path to the trace_processor executable.
    trace_file: path to the trace file.
    sql_command: string SQL command

  Returns:
    SQL query output table when executed on the proto trace as a
    list of dictionaries. Each item in the list represents a row
    in the output table. All values in the dictionary are
    represented as strings. Null is represented as None.
    Booleans are represented as '0' and '1'. Empty queries
    or rows return [].

    For example, for a SQL output table that looks like this:
      | "string_col" | "long_col" | "double_col" | "bool_col" | "maybe_null_col"
      | "StringVal1" |  123       | 12.34        | true       | "[NULL]"
      | "StringVal2" |  124       | 34.56        | false      |  25
      | "StringVal3" |  125       | 68.92        | false      | "[NULL]"

    The list of dictionaries result will look like this:
      [{
        'string_col': 'StringVal1',
        'long_col': '123',
        'double_col': '12.34',
        'bool_col': '1',
        'maybe_null_col': None,
      }, {
        'string_col': 'StringVal2',
        'long_col': '124',
        'double_col': '34.56',
        'bool_col': '0',
        'maybe_null_col': '25',
      }, {
        'string_col': 'StringVal3',
        'long_col': '125',
        'double_col': '68.92',
        'bool_col': '0',
        'maybe_null_col': None,
      }]
  """
  trace_processor_path = _EnsureTraceProcessor(trace_processor_path)

  # Write query to temporary file because trace processor accepts
  # SQL query in a file.
  tp_output = None
  with tempfile_ext.NamedTemporaryFile(mode='w+') as sql_file:
    sql_file.write(sql_command)
    sql_file.close()
    # Run Trace Processor
    command_args = [
        trace_processor_path,
        '--query-file',
        sql_file.name,
        trace_file,
    ]
    tp_output = _RunTraceProcessor(*command_args)

  # Trace Processor returns output string in csv format. Write
  # string to temporary file because reader accepts csv files.
  # Parse csv file into list of dictionaries because DictReader
  # object inconveniently requires open csv file to access data.
  csv_output = []
  # tempfile creates and opens the file
  with tempfile.NamedTemporaryFile(mode='w+') as csv_file:
    csv_file.write(tp_output)
    csv_file.flush()
    csv_file.seek(0)
    csv_reader = csv.DictReader(csv_file)
    for row in csv_reader:
      # CSV file represents null values as the string '[NULL]'.
      # Parse these null values to None type.
      row_parsed = dict(row)
      for key, val in row_parsed.items():
        if val == '[NULL]':
          row_parsed[key] = None
      csv_output.append(row_parsed)

  return csv_output


def RunMetrics(trace_processor_path,
               trace_file,
               metric_names,
               fetch_power_profile=False,
               retain_all_samples=False):
  """Run TBMv3 metrics using trace processor.

  Args:
    trace_processor_path: path to the trace_processor executable.
    trace_file: path to the trace file.
    metric_names: a list of metric names (the corresponding files must exist in
      tbmv3/metrics directory).

  Returns:
    A HistogramSet with metric results.
  """
  trace_processor_path = _EnsureTraceProcessor(trace_processor_path)
  metric_name_args = []
  for metric_name in metric_names:
    metric_files = _CreateMetricFiles(metric_name)
    if metric_files.internal_metric:
      metric_name_args.append(metric_name)
    else:
      metric_name_args.append(metric_files.sql)
  command_args = [
      trace_processor_path,
      '--run-metrics',
      ','.join(metric_name_args),
      '--metrics-output',
      'json',
      trace_file,
  ]
  if fetch_power_profile:
    command_args[1:1] = ['--pre-metrics', _EnsurePowerProfile()]

  output = _RunTraceProcessor(*command_args)
  measurements = json.loads(output)

  histograms = histogram_set.HistogramSet()
  root_annotations = measurements.get('__annotations', {})
  for metric_name in metric_names:
    full_metric_name = 'perfetto.protos.' + metric_name
    annotations = root_annotations.get(full_metric_name, None)
    metric_proto = measurements.get(full_metric_name, None)
    if metric_proto is None:
      logging.warning('Metric not found in the output: %s', metric_name)
      continue
    if annotations is None:
      logging.info('Skipping metric %s because it has no field with unit.',
                   metric_name)
      continue

    for field in _LeafFieldAnnotations(annotations):
      unit = field.field_options.get('unit', None)
      if unit is None:
        logging.debug('Skipping field %s to histograms because it has no unit',
                      field.name)
        continue
      histogram_name = ':'.join([field.name for field in field.path_from_root])
      samples = _PluckField(metric_proto, field.path_from_root)
      scoped_histogram_name = _ScopedHistogramName(metric_name, histogram_name)
      hist = Histogram(scoped_histogram_name, unit)
      if retain_all_samples:
        hist.max_num_sample_values = float('inf')
      for sample in samples:
        hist.AddSample(sample)
      histograms.AddHistogram(hist)
  return histograms


def RunMetric(trace_processor_path,
              trace_file,
              metric_name,
              fetch_power_profile=False,
              retain_all_samples=False):
  return RunMetrics(trace_processor_path,
                    trace_file, [metric_name],
                    fetch_power_profile=fetch_power_profile,
                    retain_all_samples=retain_all_samples)


def ConvertProtoTraceToJson(trace_processor_path, proto_file, json_path):
  """Convert proto trace to json using trace processor.

  Args:
    trace_processor_path: path to the trace_processor executable.
    proto_file: path to the proto trace file.
    json_path: path to the output file.

  Returns:
    Output path.
  """
  trace_processor_path = _EnsureTraceProcessor(trace_processor_path)
  with tempfile_ext.NamedTemporaryFile(mode='w+') as query_file:
    query_file.write(EXPORT_JSON_QUERY_TEMPLATE % _SqlString(json_path))
    query_file.close()
    _RunTraceProcessor(
        trace_processor_path,
        '-q',
        query_file.name,
        proto_file,
    )

  return json_path