// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ui/display/manager/managed_display_info.h"
#include <stdio.h>
#include <limits>
#include <string>
#include <string_view>
#include <vector>
#include "base/logging.h"
#include "base/notreached.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "build/chromeos_buildflags.h"
#include "ui/display/display.h"
#include "ui/display/display_features.h"
#include "ui/display/display_switches.h"
#include "ui/display/manager/util/display_manager_test_util.h"
#include "ui/display/manager/util/display_manager_util.h"
#include "ui/display/types/display_constants.h"
#include "ui/display/util/display_util.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/display_color_spaces.h"
#include "ui/gfx/geometry/dip_util.h"
#include "ui/gfx/geometry/insets_conversions.h"
#include "ui/gfx/geometry/rounded_corners_f.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/size_f.h"
namespace display {
namespace {
const float kDpi96 = 96.0;
// The recommended default external display DPI, only used when an external
// display is connected for the first time. e.g. when a 4K native mode is used
// when firstly connected, the content is almost certainly too small. The value
// comes from the metrics of currently most used external effective display DPI
// - Ash.Display.ExternalDisplay.ActiveEffectiveDPI.
const float kRecommendedDefaultExternalDisplayDpi = kDpi96;
// Check the content of |spec| and fill |bounds| and |device_scale_factor|.
// Returns true when |bounds| is found.
void GetDisplayBounds(const std::string& spec,
gfx::Rect* bounds,
float* device_scale_factor) {
int width = 0;
int height = 0;
int x = 0;
int y = 0;
if (sscanf(spec.c_str(), "%dx%d*%f", &width, &height, device_scale_factor) >=
2 ||
sscanf(spec.c_str(), "%d+%d-%dx%d*%f", &x, &y, &width, &height,
device_scale_factor) >= 4) {
bounds->SetRect(x, y, width, height);
auto equals_within_epsilon = [device_scale_factor](float dsf) {
return std::abs(*device_scale_factor - dsf) < 0.01f;
};
if (equals_within_epsilon(1.77f)) {
*device_scale_factor = kDsf_1_777;
} else if (equals_within_epsilon(1.8f)) {
*device_scale_factor = kDsf_1_8;
} else if (equals_within_epsilon(2.25f)) {
*device_scale_factor = kDsf_2_252;
} else if (equals_within_epsilon(2.66f)) {
*device_scale_factor = kDsf_2_666;
}
return;
}
LOG(FATAL) << "Invalid format:" << spec;
}
// Display mode list is sorted by:
// * the area in pixels in ascending order
// * refresh rate in descending order
struct ManagedDisplayModeSorter {
bool operator()(const ManagedDisplayMode& a, const ManagedDisplayMode& b) {
gfx::Size size_a_dip = a.GetSizeInDIP();
gfx::Size size_b_dip = b.GetSizeInDIP();
if (size_a_dip.GetArea() == size_b_dip.GetArea())
return (a.refresh_rate() > b.refresh_rate());
return (size_a_dip.GetArea() < size_b_dip.GetArea());
}
};
bool IsWithinEpsilon(float a, float b) {
constexpr float kEpsilon = 0.0001f;
return std::abs(a - b) < kEpsilon;
}
std::string PanelOrientationToString(PanelOrientation orientation) {
switch (orientation) {
case kNormal:
return "Normal";
case kBottomUp:
return "BottomUp";
case kLeftUp:
return "LeftUp";
case kRightUp:
return "RightUp";
}
NOTREACHED_IN_MIGRATION();
return "";
}
} // namespace
ManagedDisplayMode::ManagedDisplayMode() = default;
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size) : size_(size) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native) {}
ManagedDisplayMode::ManagedDisplayMode(const gfx::Size& size,
float refresh_rate,
bool is_interlaced,
bool native,
float device_scale_factor)
: size_(size),
refresh_rate_(refresh_rate),
is_interlaced_(is_interlaced),
native_(native),
device_scale_factor_(device_scale_factor) {}
ManagedDisplayMode::~ManagedDisplayMode() = default;
ManagedDisplayMode::ManagedDisplayMode(const ManagedDisplayMode& other) =
default;
ManagedDisplayMode& ManagedDisplayMode::operator=(
const ManagedDisplayMode& other) = default;
bool ManagedDisplayMode::operator==(const ManagedDisplayMode& other) const {
return size_ == other.size_ && is_interlaced_ == other.is_interlaced_ &&
native_ == other.native_ &&
IsWithinEpsilon(refresh_rate_, other.refresh_rate_) &&
IsWithinEpsilon(device_scale_factor_, other.device_scale_factor_);
}
gfx::Size ManagedDisplayMode::GetSizeInDIP() const {
gfx::SizeF size_dip(size_);
size_dip.InvScale(device_scale_factor_);
return gfx::ToFlooredSize(size_dip);
}
bool ManagedDisplayMode::IsEquivalent(const ManagedDisplayMode& other) const {
if (display::features::IsListAllDisplayModesEnabled())
return *this == other;
return size_ == other.size_ &&
IsWithinEpsilon(device_scale_factor_, other.device_scale_factor_);
}
std::string ManagedDisplayMode::ToString() const {
return base::StringPrintf(
"DisplayMode{size: %s, refresh_rate: %f, interlaced:"
" %d, native: %d, device_scale_factor: %f}",
size_.ToString().c_str(), refresh_rate_, is_interlaced_, native_,
device_scale_factor_);
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpec(const std::string& spec) {
return CreateFromSpecWithID(spec, kInvalidDisplayId);
}
// static
ManagedDisplayInfo ManagedDisplayInfo::CreateFromSpecWithID(
const std::string& spec,
int64_t id) {
// Default bounds for a display.
const int kDefaultHostWindowX = 200;
const int kDefaultHostWindowY = 200;
const int kDefaultHostWindowWidth = 1366;
const int kDefaultHostWindowHeight = 768;
gfx::Rect bounds_in_native(kDefaultHostWindowX, kDefaultHostWindowY,
kDefaultHostWindowWidth, kDefaultHostWindowHeight);
std::string_view main_spec = spec;
gfx::RoundedCornersF panel_corners_radii;
std::vector<std::string_view> parts = base::SplitStringPiece(
main_spec, "~", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
std::vector<std::string_view> radii_part = base::SplitStringPiece(
parts[1], "|", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
DCHECK(radii_part.size() == 1 || radii_part.size() == 4);
float radii[4];
int radius_in_int = 0;
for (size_t idx = 0; idx < radii_part.size(); ++idx) {
std::string_view radius = radii_part[idx];
bool conversion_success = base::StringToInt(radius, &radius_in_int);
DCHECK(conversion_success);
radii[idx] = static_cast<float>(radius_in_int);
}
panel_corners_radii =
(radii_part.size() == 1)
? gfx::RoundedCornersF{radii[0]}
: gfx::RoundedCornersF{radii[0], radii[1], radii[2], radii[3]};
main_spec = parts[0];
}
float zoom_factor = 1.0f;
parts = base::SplitStringPiece(main_spec, "@", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
double scale_in_double = 0;
if (base::StringToDouble(parts[1], &scale_in_double))
zoom_factor = scale_in_double;
main_spec = parts[0];
}
parts = base::SplitStringPiece(main_spec, "/", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
Display::Rotation rotation(Display::ROTATE_0);
bool has_overscan = false;
bool has_hdr = false;
if (!parts.empty()) {
main_spec = parts[0];
if (parts.size() >= 2) {
std::string_view options = parts[1];
for (char c : options) {
switch (c) {
case 'o':
has_overscan = true;
break;
case 'h':
has_hdr = true;
break;
case 'r': // rotate 90 degrees to 'right'.
rotation = Display::ROTATE_90;
break;
case 'u': // 180 degrees, 'u'pside-down.
rotation = Display::ROTATE_180;
break;
case 'l': // rotate 90 degrees to 'left'.
rotation = Display::ROTATE_270;
break;
}
}
}
}
float device_scale_factor = 1.0f;
ManagedDisplayModeList display_modes;
if (!main_spec.empty()) {
GetDisplayBounds(std::string(main_spec), &bounds_in_native,
&device_scale_factor);
parts = base::SplitStringPiece(main_spec, "#", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
if (parts.size() == 2) {
size_t native_mode = 0;
int largest_area = -1;
float highest_refresh_rate = -1.0f;
main_spec = parts[0];
std::string_view resolution_list = parts[1];
parts =
base::SplitStringPiece(resolution_list, "|", base::KEEP_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
for (size_t i = 0; i < parts.size(); ++i) {
gfx::Size size;
float refresh_rate = 60.0f;
bool is_interlaced = false;
gfx::Rect mode_bounds;
std::vector<std::string_view> resolution = base::SplitStringPiece(
parts[i], "%", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY);
float device_scale_factor_for_mode = device_scale_factor;
GetDisplayBounds(std::string(resolution[0]), &mode_bounds,
&device_scale_factor_for_mode);
size = mode_bounds.size();
if (resolution.size() > 1) {
double refresh_rate_in_double = 0.0;
if (base::StringToDouble(resolution[1], &refresh_rate_in_double))
refresh_rate = refresh_rate_in_double;
}
if (size.GetArea() >= largest_area &&
refresh_rate > highest_refresh_rate) {
// Use mode with largest area and highest refresh rate as native.
largest_area = size.GetArea();
highest_refresh_rate = refresh_rate;
native_mode = i;
}
display_modes.emplace_back(size, refresh_rate, is_interlaced, false,
device_scale_factor_for_mode);
}
ManagedDisplayMode dm = display_modes[native_mode];
display_modes[native_mode] =
ManagedDisplayMode(dm.size(), dm.refresh_rate(), dm.is_interlaced(),
true, dm.device_scale_factor());
}
}
ManagedDisplayInfo display_info =
id == kInvalidDisplayId ? CreateDisplayInfo(GetASynthesizedDisplayId())
: CreateDisplayInfo(id);
display_info.set_device_scale_factor(device_scale_factor);
display_info.SetRotation(rotation, Display::RotationSource::ACTIVE);
display_info.SetRotation(rotation, Display::RotationSource::USER);
display_info.set_zoom_factor(zoom_factor);
display_info.SetBounds(bounds_in_native);
display_info.set_has_overscan(has_overscan);
display_info.set_panel_corners_radii(panel_corners_radii);
if (!display_modes.size()) {
display_modes.emplace_back(display_info.size_in_pixel(), 60.0f,
/*interlace=*/false, /*native=*/true,
device_scale_factor);
}
display_info.SetManagedDisplayModes(display_modes);
// To test the overscan, it creates the default 5% overscan.
if (has_overscan) {
int width = bounds_in_native.width() / device_scale_factor / 40;
int height = bounds_in_native.height() / device_scale_factor / 40;
display_info.SetOverscanInsets(gfx::Insets::VH(height, width));
display_info.UpdateDisplaySize();
}
if (has_hdr) {
gfx::DisplayColorSpaces display_color_spaces{
gfx::ColorSpace::CreateHDR10(), gfx::BufferFormat::BGRA_1010102};
display_info.set_display_color_spaces(display_color_spaces);
}
DVLOG(1) << "DisplayInfoFromSpec info=" << display_info.ToString()
<< ", spec=" << spec;
return display_info;
}
ManagedDisplayInfo::ManagedDisplayInfo()
: id_(kInvalidDisplayId),
year_of_manufacture_(kInvalidYearOfManufacture),
has_overscan_(false),
active_rotation_source_(Display::RotationSource::UNKNOWN),
touch_support_(Display::TouchSupport::UNKNOWN),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
panel_orientation_(display::PanelOrientation::kNormal),
zoom_factor_(1.f),
refresh_rate_(60.f),
is_interlaced_(false),
from_native_platform_(false),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false),
bits_per_channel_(0),
variable_refresh_rate_state_(VariableRefreshRateState::kVrrNotCapable),
vsync_rate_min_(std::nullopt) {}
ManagedDisplayInfo::ManagedDisplayInfo(int64_t id,
const std::string& name,
bool has_overscan)
: id_(id),
name_(name),
year_of_manufacture_(kInvalidYearOfManufacture),
has_overscan_(has_overscan),
active_rotation_source_(Display::RotationSource::UNKNOWN),
touch_support_(Display::TouchSupport::UNKNOWN),
device_scale_factor_(1.0f),
device_dpi_(kDpi96),
panel_orientation_(display::PanelOrientation::kNormal),
zoom_factor_(1.f),
refresh_rate_(60.f),
is_interlaced_(false),
from_native_platform_(false),
native_(false),
is_aspect_preserving_scaling_(false),
clear_overscan_insets_(false),
bits_per_channel_(0),
variable_refresh_rate_state_(VariableRefreshRateState::kVrrNotCapable),
vsync_rate_min_(std::nullopt) {}
ManagedDisplayInfo::ManagedDisplayInfo(const ManagedDisplayInfo& other) =
default;
ManagedDisplayInfo::~ManagedDisplayInfo() = default;
void ManagedDisplayInfo::SetRotation(Display::Rotation rotation,
Display::RotationSource source) {
rotations_[source] = rotation;
rotations_[Display::RotationSource::ACTIVE] = rotation;
active_rotation_source_ = source;
}
Display::Rotation ManagedDisplayInfo::GetActiveRotation() const {
return GetRotation(Display::RotationSource::ACTIVE);
}
Display::Rotation ManagedDisplayInfo::GetLogicalActiveRotation() const {
return GetRotationWithPanelOrientation(
GetRotation(Display::RotationSource::ACTIVE));
}
Display::Rotation ManagedDisplayInfo::GetRotation(
Display::RotationSource source) const {
if (rotations_.find(source) == rotations_.end())
return Display::ROTATE_0;
return rotations_.at(source);
}
void ManagedDisplayInfo::AddZoomFactorForSize(const std::string& size,
float zoom_factor) {
zoom_factor_map_[size] = zoom_factor;
}
void ManagedDisplayInfo::Copy(const ManagedDisplayInfo& native_info) {
DCHECK(id_ == native_info.id_);
port_display_id_ = native_info.port_display_id_;
edid_display_id_ = native_info.edid_display_id_;
connector_index_ = native_info.connector_index_;
manufacturer_id_ = native_info.manufacturer_id_;
product_id_ = native_info.product_id_;
year_of_manufacture_ = native_info.year_of_manufacture_;
name_ = native_info.name_;
has_overscan_ = native_info.has_overscan_;
active_rotation_source_ = native_info.active_rotation_source_;
touch_support_ = native_info.touch_support_;
connection_type_ = native_info.connection_type_;
physical_size_ = native_info.physical_size_;
device_scale_factor_ = native_info.device_scale_factor_;
DCHECK(!native_info.bounds_in_native_.IsEmpty());
bounds_in_native_ = native_info.bounds_in_native_;
device_dpi_ = native_info.device_dpi_;
panel_orientation_ = native_info.panel_orientation_,
size_in_pixel_ = native_info.size_in_pixel_;
is_aspect_preserving_scaling_ = native_info.is_aspect_preserving_scaling_;
display_modes_ = native_info.display_modes_;
maximum_cursor_size_ = native_info.maximum_cursor_size_;
display_color_spaces_ = native_info.display_color_spaces_;
#if BUILDFLAG(IS_CHROMEOS_ASH)
snapshot_color_space_ = native_info.snapshot_color_space_;
#endif
bits_per_channel_ = native_info.bits_per_channel_;
refresh_rate_ = native_info.refresh_rate_;
is_interlaced_ = native_info.is_interlaced_;
native_ = native_info.native_;
panel_corners_radii_ = native_info.panel_corners_radii_;
drm_formats_and_modifiers_ = native_info.drm_formats_and_modifiers_;
variable_refresh_rate_state_ = native_info.variable_refresh_rate_state_;
vsync_rate_min_ = native_info.vsync_rate_min_;
detected_ = native_info.detected_;
// Rotation, color_profile and overscan are given by preference,
// or unit tests. Don't copy if this native_info came from
// DisplayChangeObserver.
if (native_info.from_native_platform())
return;
// Update the overscan_insets_in_dip_ either if the inset should be
// cleared, or has non empty insets.
if (native_info.clear_overscan_insets())
overscan_insets_in_dip_ = gfx::Insets();
else if (!native_info.overscan_insets_in_dip_.IsEmpty())
overscan_insets_in_dip_ = native_info.overscan_insets_in_dip_;
rotations_ = native_info.rotations_;
zoom_factor_ = native_info.zoom_factor_;
}
void ManagedDisplayInfo::SetBounds(const gfx::Rect& new_bounds_in_native) {
DCHECK_NE(new_bounds_in_native.width(), new_bounds_in_native.height());
bounds_in_native_ = new_bounds_in_native;
size_in_pixel_ = new_bounds_in_native.size();
UpdateDisplaySize();
}
float ManagedDisplayInfo::GetEffectiveDeviceScaleFactor() const {
if (zoom_factor_ == 1.0f) {
return device_scale_factor_;
}
// When the display zoom is applied, try to adjust the final scale so that it
// will produce the integer pixel size (wider side) when the scale is applied
// to the logical size. Note that this a best effort and not guaranteed.
const float scale_factor = device_scale_factor_ * zoom_factor_;
const int pixel_size =
std::max(bounds_in_native_.width(), bounds_in_native_.height());
const float logical_size_f = pixel_size / scale_factor;
// Floor the value by default but allow very close value to be roudnd up.
const int32_t logical_size = base::ClampFloor(logical_size_f + 0.0005);
return pixel_size / static_cast<float>(logical_size);
}
void ManagedDisplayInfo::UpdateZoomFactorToMatchTargetDPI() {
// Only update zoom factor if device dpi is valid.
if (!device_dpi_) {
return;
}
const float target_zoom_factor =
device_dpi_ / kRecommendedDefaultExternalDisplayDpi;
// Refine zoom factor based on available zoom factors in settings.
const int display_larger_side =
std::max(bounds_in_native_.width(), bounds_in_native_.height());
const std::vector<float> avaialble_zoom_factors =
GetDisplayZoomFactorsByDisplayWidth(display_larger_side);
DCHECK_GE(avaialble_zoom_factors.size(), 1u);
const float min_zoom_factor = avaialble_zoom_factors.front();
const float max_zoom_factor = avaialble_zoom_factors.back();
// Check min boundary.
if (target_zoom_factor <= min_zoom_factor) {
zoom_factor_ = min_zoom_factor;
} else if (target_zoom_factor >= max_zoom_factor) {
// Check max boundary.
zoom_factor_ = max_zoom_factor;
} else {
// Round to the neareast available zoom factor.
DCHECK(std::is_sorted(avaialble_zoom_factors.begin(),
avaialble_zoom_factors.end()));
for (size_t i = 0; i < avaialble_zoom_factors.size() - 1; i++) {
const float left_bound = avaialble_zoom_factors[i];
const float right_bound = avaialble_zoom_factors[i + 1];
if (target_zoom_factor >= right_bound) {
continue;
}
zoom_factor_ =
(target_zoom_factor - left_bound < right_bound - target_zoom_factor)
? left_bound
: right_bound;
break;
}
}
// Also update the zoom factor in the zoom_factor_map_.
AddZoomFactorForSize(size_in_pixel_.ToString(), zoom_factor_);
}
gfx::Size ManagedDisplayInfo::GetSizeInPixelWithPanelOrientation() const {
gfx::Size size = bounds_in_native_.size();
if (panel_orientation_ == display::PanelOrientation::kLeftUp ||
panel_orientation_ == display::PanelOrientation::kRightUp) {
return gfx::Size(size.height(), size.width());
}
return size;
}
void ManagedDisplayInfo::UpdateDisplaySize() {
size_in_pixel_ = GetSizeInPixelWithPanelOrientation();
if (!overscan_insets_in_dip_.IsEmpty()) {
gfx::Insets insets_in_pixel = GetOverscanInsetsInPixel();
size_in_pixel_.Enlarge(-insets_in_pixel.width(), -insets_in_pixel.height());
} else {
overscan_insets_in_dip_ = gfx::Insets();
}
if (GetActiveRotation() == Display::ROTATE_90 ||
GetActiveRotation() == Display::ROTATE_270) {
size_in_pixel_.SetSize(size_in_pixel_.height(), size_in_pixel_.width());
}
}
void ManagedDisplayInfo::SetOverscanInsets(const gfx::Insets& insets_in_dip) {
overscan_insets_in_dip_ = insets_in_dip;
}
gfx::Insets ManagedDisplayInfo::GetOverscanInsetsInPixel() const {
return gfx::ToFlooredInsets(gfx::ConvertInsetsToPixels(
overscan_insets_in_dip_, device_scale_factor_));
}
#if BUILDFLAG(IS_CHROMEOS_ASH)
void ManagedDisplayInfo::SetSnapshotColorSpace(
const gfx::ColorSpace& snapshot_color) {
snapshot_color_space_ = snapshot_color;
}
gfx::ColorSpace ManagedDisplayInfo::GetSnapshotColorSpace() const {
return snapshot_color_space_;
}
#endif
void ManagedDisplayInfo::SetManagedDisplayModes(
const ManagedDisplayModeList& display_modes) {
display_modes_ = display_modes;
std::sort(display_modes_.begin(), display_modes_.end(),
ManagedDisplayModeSorter());
}
gfx::Size ManagedDisplayInfo::GetNativeModeSize() const {
for (const ManagedDisplayMode& display_mode : display_modes_) {
if (display_mode.native())
return display_mode.size();
}
return gfx::Size();
}
std::string ManagedDisplayInfo::ToString() const {
int rotation_degree = static_cast<int>(GetActiveRotation()) * 90;
std::string result = base::StringPrintf(
"ManagedDisplayInfo[%lld] port_display_id=%lld, edid_display_id=%lld, "
"native bounds=%s, size=%s, device-scale=%g, "
"display-zoom=%g, overscan=%s, rotation=%d, touchscreen=%s, "
"panel_corners_radii=%s, panel_orientation=%s, detected=%s, "
"color_space=%s",
static_cast<long long int>(id_),
static_cast<long long int>(port_display_id_),
static_cast<long long int>(edid_display_id_),
bounds_in_native_.ToString().c_str(), size_in_pixel_.ToString().c_str(),
device_scale_factor_, zoom_factor_,
overscan_insets_in_dip_.ToString().c_str(), rotation_degree,
touch_support_ == Display::TouchSupport::AVAILABLE ? "yes"
: touch_support_ == Display::TouchSupport::UNAVAILABLE ? "no"
: "unknown",
panel_corners_radii_.ToString().c_str(),
PanelOrientationToString(panel_orientation_).c_str(),
detected_ ? "true" : "false",
display_color_spaces_.GetRasterColorSpace().ToString().c_str());
return result;
}
std::string ManagedDisplayInfo::ToFullString() const {
std::string display_modes_str;
for (const ManagedDisplayMode& m : display_modes_) {
if (!display_modes_str.empty())
display_modes_str += ",";
base::StringAppendF(&display_modes_str, "(%dx%d@%g%c%s %g)",
m.size().width(), m.size().height(), m.refresh_rate(),
m.is_interlaced() ? 'I' : 'P', m.native() ? "(N)" : "",
m.device_scale_factor());
}
return ToString() + ", display_modes==" + display_modes_str;
}
Display::Rotation ManagedDisplayInfo::GetRotationWithPanelOrientation(
Display::Rotation rotation) const {
int offset = 0;
switch (panel_orientation_) {
case PanelOrientation::kNormal:
break;
case PanelOrientation::kBottomUp:
offset = 2;
break;
case PanelOrientation::kRightUp:
offset = 1;
break;
case PanelOrientation::kLeftUp:
offset = 3;
break;
}
return static_cast<Display::Rotation>((static_cast<int>(rotation) + offset) %
4);
}
ManagedDisplayInfo CreateDisplayInfo(int64_t id, const gfx::Rect& bounds) {
display::ManagedDisplayInfo info(
id, base::StringPrintf("Display-%d", static_cast<int>(id)), false);
const int64_t alternate_id = ProduceAlternativeSchemeIdForId(id);
if (features::IsEdidBasedDisplayIdsEnabled()) {
info.set_edid_display_id(id);
info.set_connector_index(GetNextSynthesizedEdidDisplayConnectorIndex());
info.set_port_display_id(alternate_id);
} else {
info.set_port_display_id(id);
// Output index is stored in the first 8 bits.
info.set_connector_index(id & 0xFF);
info.set_edid_display_id(alternate_id);
}
if (!bounds.IsEmpty()) {
info.SetBounds(bounds);
}
return info;
}
} // namespace display