// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/display/manager/util/display_manager_util.h"
#include <stddef.h>
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cmath>
#include <set>
#include <sstream>
#include <vector>
#include "base/check_op.h"
#include "base/command_line.h"
#include "base/memory/raw_ptr.h"
#include "base/notreached.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "build/chromeos_buildflags.h"
#include "ui/base/ui_base_switches.h"
#include "ui/display/display_switches.h"
#include "ui/display/manager/managed_display_info.h"
#include "ui/display/types/display_snapshot.h"
#include "ui/display/util/display_util.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/size_f.h"
#if BUILDFLAG(IS_CHROMEOS_ASH)
#include "chromeos/ash/components/system/statistics_provider.h"
#endif
namespace display {
#if BUILDFLAG(IS_CHROMEOS_ASH)
std::string DisplayPowerStateToString(chromeos::DisplayPowerState state) {
switch (state) {
case chromeos::DISPLAY_POWER_ALL_ON:
return "ALL_ON";
case chromeos::DISPLAY_POWER_ALL_OFF:
return "ALL_OFF";
case chromeos::DISPLAY_POWER_INTERNAL_OFF_EXTERNAL_ON:
return "INTERNAL_OFF_EXTERNAL_ON";
case chromeos::DISPLAY_POWER_INTERNAL_ON_EXTERNAL_OFF:
return "INTERNAL_ON_EXTERNAL_OFF";
default:
return "unknown (" + base::NumberToString(state) + ")";
}
}
std::string VrrStateToString(const base::flat_set<int64_t>& state) {
std::vector<std::string> entries;
for (const int64_t id : state) {
entries.push_back(base::NumberToString(id));
}
return "{" + base::JoinString(entries, ", ") + "}";
}
std::string RefreshRateOverrideToString(
const std::unordered_map<int64_t, float>& refresh_rate_override) {
std::vector<std::string> entries;
for (const auto& [id, refresh_rate] : refresh_rate_override) {
entries.push_back(base::StringPrintf("%" PRId64 ": %f", id, refresh_rate));
}
return "{" + base::JoinString(entries, ", ") + "}";
}
int GetDisplayPower(
const std::vector<raw_ptr<DisplaySnapshot, VectorExperimental>>& displays,
chromeos::DisplayPowerState state,
std::vector<bool>* display_power) {
int num_on_displays = 0;
if (display_power) {
display_power->resize(displays.size());
}
for (size_t i = 0; i < displays.size(); ++i) {
bool internal = displays[i]->type() == DISPLAY_CONNECTION_TYPE_INTERNAL;
bool on =
state == chromeos::DISPLAY_POWER_ALL_ON ||
(state == chromeos::DISPLAY_POWER_INTERNAL_OFF_EXTERNAL_ON &&
!internal) ||
(state == chromeos::DISPLAY_POWER_INTERNAL_ON_EXTERNAL_OFF && internal);
if (display_power) {
(*display_power)[i] = on;
}
if (on) {
num_on_displays++;
}
}
return num_on_displays;
}
#endif // BUILDFLAG(IS_CHROMEOS_ASH)
bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
std::string MultipleDisplayStateToString(MultipleDisplayState state) {
switch (state) {
case MULTIPLE_DISPLAY_STATE_INVALID:
return "INVALID";
case MULTIPLE_DISPLAY_STATE_HEADLESS:
return "HEADLESS";
case MULTIPLE_DISPLAY_STATE_SINGLE:
return "SINGLE";
case MULTIPLE_DISPLAY_STATE_MULTI_MIRROR:
return "DUAL_MIRROR";
case MULTIPLE_DISPLAY_STATE_MULTI_EXTENDED:
return "MULTI_EXTENDED";
}
NOTREACHED_IN_MIGRATION() << "Unknown state " << state;
return "INVALID";
}
bool GetContentProtectionMethods(DisplayConnectionType type,
uint32_t* protection_mask) {
switch (type) {
case DISPLAY_CONNECTION_TYPE_NONE:
case DISPLAY_CONNECTION_TYPE_UNKNOWN:
return false;
case DISPLAY_CONNECTION_TYPE_INTERNAL:
case DISPLAY_CONNECTION_TYPE_VGA:
case DISPLAY_CONNECTION_TYPE_NETWORK:
*protection_mask = CONTENT_PROTECTION_METHOD_NONE;
return true;
case DISPLAY_CONNECTION_TYPE_DISPLAYPORT:
case DISPLAY_CONNECTION_TYPE_DVI:
case DISPLAY_CONNECTION_TYPE_HDMI:
*protection_mask = CONTENT_PROTECTION_METHOD_HDCP;
return true;
}
}
std::vector<float> GetDisplayZoomFactors(const ManagedDisplayMode& mode) {
// Internal displays have an internal device scale factor greater than 1
// associated with them. This means that if we use the usual logic, we would
// end up with a list of zoom levels that the user may not find very useful.
// Take for example the pixelbook with device scale factor of 2. Based on the
// usual approach, we would get a zoom range of 90% to 150%. This means:
// 1. Users will not be able to go to the native resolution which is
// achieved at 50% zoom level.
// 2. Due to the device scale factor, the display already has a low DPI and
// users dont want to zoom in, they mostly want to zoom out and add more
// pixels to the screen. But we only provide a zoom list of 90% to 150%.
// This clearly shows we need a different logic to handle internal displays
// which have lower DPI due to the device scale factor associated with them.
//
// OTOH if we look at an external display with a device scale factor of 1 but
// the same resolution as the pixel book, the DPI would usually be very high
// and users mostly want to zoom in to reduce the number of pixels on the
// screen. So having a range of 90% to 130% makes sense.
// TODO(malaykeshav): Investigate if we can use DPI instead of resolution or
// device scale factor to decide the list of zoom levels.
if (mode.device_scale_factor() > 1.f) {
return GetDisplayZoomFactorForDsf(mode.device_scale_factor());
}
// There may be cases where the device scale factor is less than 1. This can
// happen during testing or local linux builds.
const int effective_width = std::round(
static_cast<float>(std::max(mode.size().width(), mode.size().height())) /
mode.device_scale_factor());
return GetDisplayZoomFactorsByDisplayWidth(effective_width);
}
std::vector<float> GetDisplayZoomFactorsByDisplayWidth(
const int display_width) {
std::size_t index = kZoomListBuckets.size() - 1;
while (index > 0 && display_width < kZoomListBuckets[index].first) {
index--;
}
DCHECK_GE(display_width, kZoomListBuckets[index].first);
const auto& zoom_array = kZoomListBuckets[index].second;
return std::vector<float>(zoom_array.begin(), zoom_array.end());
}
std::vector<float> GetDisplayZoomFactorForDsf(float dsf) {
DCHECK(!WithinEpsilon(dsf, 1.f));
DCHECK_GT(dsf, 1.f);
for (const auto& bucket : kZoomListBucketsForDsf) {
if (WithinEpsilon(bucket.first, dsf)) {
return std::vector<float>(bucket.second.begin(), bucket.second.end());
}
}
NOTREACHED_IN_MIGRATION() << "Received a DSF not on the list: " << dsf;
return {1.f / dsf, 1.f};
}
ManagedDisplayInfo::ManagedDisplayModeList CreateInternalManagedDisplayModeList(
const ManagedDisplayMode& native_mode) {
ManagedDisplayMode mode(native_mode.size(), native_mode.refresh_rate(),
native_mode.is_interlaced(), true,
native_mode.device_scale_factor());
return ManagedDisplayInfo::ManagedDisplayModeList{mode};
}
UnifiedDisplayModeParam::UnifiedDisplayModeParam(float dsf,
float scale,
bool is_default)
: device_scale_factor(dsf),
display_bounds_scale(scale),
is_default_mode(is_default) {}
ManagedDisplayInfo::ManagedDisplayModeList CreateUnifiedManagedDisplayModeList(
const ManagedDisplayMode& native_mode,
const std::vector<UnifiedDisplayModeParam>& modes_param_list) {
ManagedDisplayInfo::ManagedDisplayModeList display_mode_list;
display_mode_list.reserve(modes_param_list.size());
for (auto& param : modes_param_list) {
gfx::SizeF scaled_size(native_mode.size());
scaled_size.Scale(param.display_bounds_scale);
display_mode_list.emplace_back(
gfx::ToFlooredSize(scaled_size), native_mode.refresh_rate(),
native_mode.is_interlaced(),
param.is_default_mode ? true : false /* native */,
param.device_scale_factor);
}
// Sort the mode by the size in DIP.
std::sort(display_mode_list.begin(), display_mode_list.end(),
[](const ManagedDisplayMode& a, const ManagedDisplayMode& b) {
return a.GetSizeInDIP().GetArea() < b.GetSizeInDIP().GetArea();
});
return display_mode_list;
}
bool ForceFirstDisplayInternal() {
base::CommandLine* command_line = base::CommandLine::ForCurrentProcess();
bool ret = command_line->HasSwitch(::switches::kUseFirstDisplayAsInternal);
#if BUILDFLAG(IS_CHROMEOS_ASH)
// Touch view mode is only available to internal display. We force the
// display as internal for emulator to test touch view mode.
// However, display mode change is only available to external display. To run
// tests on a different display mode from default we will need to set the flag
// --drm-virtual-connector-is-external.
ret = ret ||
(ash::system::StatisticsProvider::GetInstance()->IsRunningOnVm() &&
!command_line->HasSwitch(switches::kDRMVirtualConnectorIsExternal));
#endif
return ret;
}
bool ComputeBoundary(const gfx::Rect& a_bounds,
const gfx::Rect& b_bounds,
gfx::Rect* a_edge,
gfx::Rect* b_edge) {
// Find touching side.
int rx = std::max(a_bounds.x(), b_bounds.x());
int ry = std::max(a_bounds.y(), b_bounds.y());
int rr = std::min(a_bounds.right(), b_bounds.right());
int rb = std::min(a_bounds.bottom(), b_bounds.bottom());
DisplayPlacement::Position position;
if (rb == ry) {
// top bottom
if (rr <= rx) {
// Top and bottom align, but no edges are shared.
return false;
}
if (a_bounds.bottom() == b_bounds.y()) {
position = DisplayPlacement::BOTTOM;
} else if (a_bounds.y() == b_bounds.bottom()) {
position = DisplayPlacement::TOP;
} else {
return false;
}
} else if (rr == rx) {
// left right
if (rb <= ry) {
// Left and right align, but no edges are shared.
return false;
}
if (a_bounds.right() == b_bounds.x()) {
position = DisplayPlacement::RIGHT;
} else if (a_bounds.x() == b_bounds.right()) {
position = DisplayPlacement::LEFT;
} else {
return false;
}
} else {
return false;
}
switch (position) {
case DisplayPlacement::TOP:
case DisplayPlacement::BOTTOM: {
int left = std::max(a_bounds.x(), b_bounds.x());
int right = std::min(a_bounds.right(), b_bounds.right());
if (position == DisplayPlacement::TOP) {
a_edge->SetRect(left, a_bounds.y(), right - left, 1);
b_edge->SetRect(left, b_bounds.bottom() - 1, right - left, 1);
} else {
a_edge->SetRect(left, a_bounds.bottom() - 1, right - left, 1);
b_edge->SetRect(left, b_bounds.y(), right - left, 1);
}
break;
}
case DisplayPlacement::LEFT:
case DisplayPlacement::RIGHT: {
int top = std::max(a_bounds.y(), b_bounds.y());
int bottom = std::min(a_bounds.bottom(), b_bounds.bottom());
if (position == DisplayPlacement::LEFT) {
a_edge->SetRect(a_bounds.x(), top, 1, bottom - top);
b_edge->SetRect(b_bounds.right() - 1, top, 1, bottom - top);
} else {
a_edge->SetRect(a_bounds.right() - 1, top, 1, bottom - top);
b_edge->SetRect(b_bounds.x(), top, 1, bottom - top);
}
break;
}
}
return true;
}
bool ComputeBoundary(const Display& display_a,
const Display& display_b,
gfx::Rect* a_edge_in_screen,
gfx::Rect* b_edge_in_screen) {
return ComputeBoundary(display_a.bounds(), display_b.bounds(),
a_edge_in_screen, b_edge_in_screen);
}
DisplayIdList CreateDisplayIdList(const Displays& list) {
return GenerateDisplayIdList(list, &Display::id);
}
DisplayIdList CreateDisplayIdList(const DisplayInfoList& updated_displays) {
return GenerateDisplayIdList(updated_displays,
&display::ManagedDisplayInfo::id);
}
void SortDisplayIdList(DisplayIdList* ids) {
std::sort(ids->begin(), ids->end(),
[](int64_t a, int64_t b) { return CompareDisplayIds(a, b); });
}
bool IsDisplayIdListSorted(const DisplayIdList& list) {
return std::is_sorted(list.begin(), list.end(), [](int64_t a, int64_t b) {
return CompareDisplayIds(a, b);
});
}
std::string DisplayIdListToString(const DisplayIdList& list) {
std::stringstream s;
const char* sep = "";
for (int64_t id : list) {
s << sep << id;
sep = ",";
}
return s.str();
}
int64_t GetDisplayIdWithoutOutputIndex(int64_t id) {
constexpr uint64_t kMask = ~static_cast<uint64_t>(0xFF);
return static_cast<int64_t>(kMask & id);
}
MixedMirrorModeParams::MixedMirrorModeParams(int64_t src_id,
const DisplayIdList& dst_ids)
: source_id(src_id), destination_ids(dst_ids) {}
MixedMirrorModeParams::MixedMirrorModeParams(
const MixedMirrorModeParams& mixed_params) = default;
MixedMirrorModeParams::~MixedMirrorModeParams() = default;
MixedMirrorModeParamsErrors ValidateParamsForMixedMirrorMode(
const DisplayIdList& connected_display_ids,
const MixedMirrorModeParams& mixed_params) {
if (connected_display_ids.size() <= 1) {
return MixedMirrorModeParamsErrors::kErrorSingleDisplay;
}
std::set<int64_t> all_display_ids;
for (auto& id : connected_display_ids) {
all_display_ids.insert(id);
}
if (!all_display_ids.count(mixed_params.source_id)) {
return MixedMirrorModeParamsErrors::kErrorSourceIdNotFound;
}
// This set is used to check duplicate id.
std::set<int64_t> specified_display_ids;
specified_display_ids.insert(mixed_params.source_id);
if (mixed_params.destination_ids.empty()) {
return MixedMirrorModeParamsErrors::kErrorDestinationIdsEmpty;
}
for (auto& id : mixed_params.destination_ids) {
if (!all_display_ids.count(id)) {
return MixedMirrorModeParamsErrors::kErrorDestinationIdNotFound;
}
if (!specified_display_ids.insert(id).second) {
return MixedMirrorModeParamsErrors::kErrorDuplicateId;
}
}
return MixedMirrorModeParamsErrors::kSuccess;
}
} // namespace display