chromium/ui/gfx/icon_util.cc

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/354829279): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "ui/gfx/icon_util.h"

#include "base/check_op.h"
#include "base/containers/heap_array.h"
#include "base/files/file_util.h"
#include "base/files/important_file_writer.h"
#include "base/memory/ref_counted_memory.h"
#include "base/notreached.h"
#include "base/scoped_generic.h"
#include "base/trace_event/trace_event.h"
#include "base/win/resource_util.h"
#include "base/win/scoped_gdi_object.h"
#include "base/win/scoped_handle.h"
#include "base/win/scoped_hdc.h"
#include "skia/ext/image_operations.h"
#include "skia/ext/skia_utils_win.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/image/image.h"
#include "ui/gfx/image/image_family.h"
#include "ui/gfx/skbitmap_operations.h"

namespace {

// Used for indicating that the .ico contains an icon (rather than a cursor)
// image. This value is set in the |idType| field of the ICONDIR structure.
const int kResourceTypeIcon = 1;

struct ScopedICONINFO : ICONINFO {
  ScopedICONINFO() {
    hbmColor = nullptr;
    hbmMask = nullptr;
  }

  ScopedICONINFO(const ScopedICONINFO&) = delete;
  ScopedICONINFO& operator=(const ScopedICONINFO&) = delete;

  ~ScopedICONINFO() {
    if (hbmColor)
      ::DeleteObject(hbmColor);
    if (hbmMask)
      ::DeleteObject(hbmMask);
  }
};

// Creates a new ImageFamily, |resized_image_family|, based on the images in
// |image_family|, but containing images of specific dimensions desirable for
// Windows icons. For each desired image dimension, it chooses the most
// appropriate image for that size, and resizes it to the desired size.
// Returns true on success, false on failure. Failure can occur if
// |image_family| is empty, all images in the family have size 0x0, or an image
// has no allocated pixel data.
// |resized_image_family| must be empty.
bool BuildResizedImageFamily(const gfx::ImageFamily& image_family,
                             gfx::ImageFamily* resized_image_family) {
  DCHECK(resized_image_family);
  DCHECK(resized_image_family->empty());

  // Determine whether there is an image bigger than 48x48 (kMediumIconSize).
  const gfx::Image* biggest =
      image_family.GetBest(IconUtil::kLargeIconSize, IconUtil::kLargeIconSize);
  if (!biggest || biggest->IsEmpty()) {
    // Either |image_family| is empty, or all images have size 0x0.
    return false;
  }

  bool has_bigger_than_medium = biggest->Width() > IconUtil::kMediumIconSize ||
                                biggest->Height() > IconUtil::kMediumIconSize;

  for (size_t i = 0; i < IconUtil::kNumIconDimensions; ++i) {
    int dimension = IconUtil::kIconDimensions[i];
    // Windows' "Large icons" view displays icons at full size only if there is
    // a 256x256 (kLargeIconSize) image in the .ico file. Otherwise, it shrinks
    // icons to 48x48 (kMediumIconSize). Therefore, if there is no source icon
    // larger than 48x48, do not create any images larger than 48x48.
    // kIconDimensions is sorted in ascending order, so it is safe to break
    // here.
    if (!has_bigger_than_medium && dimension > IconUtil::kMediumIconSize)
      break;

    gfx::Image resized = image_family.CreateExact(dimension, dimension);
    if (resized.IsEmpty()) {
      // An error occurred in CreateExact (typically because the image had the
      // wrong pixel format).
      return false;
    }

    resized_image_family->Add(resized);
  }
  return true;
}

// Creates a set of bitmaps from an image family.
// All images smaller than 256x256 are converted to SkBitmaps, and inserted into
// |bitmaps| in order of aspect ratio (thinnest to widest), and then ascending
// size order. If an image of exactly 256x256 is specified, it is converted into
// PNG format and stored in |png_bytes|. Images with width or height larger than
// 256 are ignored.
// |bitmaps| must be an empty vector, and not nullptr.
// Returns true on success, false on failure. This fails if any image in
// |image_family| is not a 32-bit ARGB image, or is otherwise invalid.
void ConvertImageFamilyToBitmaps(
    const gfx::ImageFamily& image_family,
    std::vector<SkBitmap>* bitmaps,
    scoped_refptr<base::RefCountedMemory>* png_bytes) {
  DCHECK(bitmaps);
  DCHECK(bitmaps->empty());

  for (gfx::ImageFamily::const_iterator it = image_family.begin();
       it != image_family.end(); ++it) {
    const gfx::Image& image = *it;

    // All images should have one of the kIconDimensions sizes.
    DCHECK_GT(image.Width(), 0);
    DCHECK_LE(image.Width(), IconUtil::kLargeIconSize);
    DCHECK_GT(image.Height(), 0);
    DCHECK_LE(image.Height(), IconUtil::kLargeIconSize);

    SkBitmap bitmap = image.AsBitmap();
    CHECK_EQ(bitmap.colorType(), kN32_SkColorType);
    CHECK(!bitmap.isNull());

    // Special case: Icons exactly 256x256 are stored in PNG format.
    if (image.Width() == IconUtil::kLargeIconSize &&
        image.Height() == IconUtil::kLargeIconSize) {
      *png_bytes = image.As1xPNGBytes();
    } else {
      bitmaps->push_back(bitmap);
    }
  }
}

}  // namespace

// The icon images appear in the icon file in same order in which their
// corresponding dimensions appear in this array, so it is important to keep
// this array sorted. Also note that the maximum icon image size we can handle
// is 256 by 256. See:
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa511280.aspx#size
const int IconUtil::kIconDimensions[] = {
  8,    // Recommended by the MSDN as a nice to have icon size.
  10,   // Used by the Shell (e.g. for shortcuts).
  14,   // Recommended by the MSDN as a nice to have icon size.
  16,   // Toolbar, Application and Shell icon sizes.
  22,   // Recommended by the MSDN as a nice to have icon size.
  24,   // Used by the Shell (e.g. for shortcuts).
  32,   // Toolbar, Dialog and Wizard icon size.
  40,   // Quick Launch.
  48,   // Alt+Tab icon size.
  64,   // Recommended by the MSDN as a nice to have icon size.
  96,   // Recommended by the MSDN as a nice to have icon size.
  128,  // Used by the Shell (e.g. for shortcuts).
  256   // Used by Vista onwards for large icons.
};

const size_t IconUtil::kNumIconDimensions = std::size(kIconDimensions);
const size_t IconUtil::kNumIconDimensionsUpToMediumSize = 9;

base::win::ScopedHICON IconUtil::CreateHICONFromSkBitmap(
    const SkBitmap& bitmap) {
  // Only 32 bit ARGB bitmaps are supported. We also try to perform as many
  // validations as we can on the bitmap.
  if ((bitmap.colorType() != kN32_SkColorType) || (bitmap.width() <= 0) ||
      (bitmap.height() <= 0) || (bitmap.getPixels() == nullptr))
    return base::win::ScopedHICON();

  // We start by creating a DIB which we'll use later on in order to create
  // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert
  // may contain an alpha channel and the V5 header allows us to specify the
  // alpha mask for the DIB.
  BITMAPV5HEADER bitmap_header;
  InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height());

  void* bits = nullptr;
  base::win::ScopedBitmap dib;
  {
    base::win::ScopedGetDC hdc(nullptr);
    dib = base::win::ScopedBitmap(
        ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header),
                           DIB_RGB_COLORS, &bits, nullptr, 0));
  }
  if (!dib.is_valid() || !bits)
    return base::win::ScopedHICON();

  memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4);

  // Icons are generally created using an AND and XOR masks where the AND
  // specifies boolean transparency (the pixel is either opaque or
  // transparent) and the XOR mask contains the actual image pixels. If the XOR
  // mask bitmap has an alpha channel, the AND monochrome bitmap won't
  // actually be used for computing the pixel transparency. Even though all our
  // bitmap has an alpha channel, Windows might not agree when all alpha values
  // are zero. So the monochrome bitmap is created with all pixels transparent
  // for this case. Otherwise, it is created with all pixels opaque.
  bool bitmap_has_alpha_channel =
      PixelsHaveAlpha(static_cast<const uint32_t*>(bitmap.getPixels()),
                      bitmap.width() * bitmap.height());

  std::unique_ptr<uint8_t[]> mask_bits;
  if (!bitmap_has_alpha_channel) {
    // Bytes per line with paddings to make it word alignment.
    size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2;
    size_t mask_bits_size = bytes_per_line * bitmap.height();

    mask_bits = std::make_unique<uint8_t[]>(mask_bits_size);
    DCHECK(mask_bits.get());

    // Make all pixels transparent.
    memset(mask_bits.get(), 0xFF, mask_bits_size);
  }

  base::win::ScopedBitmap mono_bitmap(
      ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1, mask_bits.get()));
  DCHECK(mono_bitmap.is_valid());

  ICONINFO icon_info;
  icon_info.fIcon = TRUE;
  icon_info.xHotspot = 0;
  icon_info.yHotspot = 0;
  icon_info.hbmMask = mono_bitmap.get();
  icon_info.hbmColor = dib.get();
  base::win::ScopedHICON icon(CreateIconIndirect(&icon_info));
  return icon;
}

SkBitmap IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) {
  // We start with validating parameters.
  if (!icon || s.IsEmpty())
    return SkBitmap();
  ScopedICONINFO icon_info;
  if (!::GetIconInfo(icon, &icon_info))
    return SkBitmap();
  if (!icon_info.fIcon)
    return SkBitmap();
  return CreateSkBitmapFromHICONHelper(icon, s);
}

// static
std::unique_ptr<gfx::ImageFamily> IconUtil::CreateImageFamilyFromIconResource(
    HMODULE module,
    int resource_id) {
  // Read the resource directly so we can get the icon image sizes. This data
  // will also be used to directly get the PNG bytes for large images.
  void* icon_dir_data = nullptr;
  size_t icon_dir_size = 0;
  if (!base::win::GetResourceFromModule(module, resource_id, RT_GROUP_ICON,
                                        &icon_dir_data, &icon_dir_size)) {
    return nullptr;
  }
  DCHECK(icon_dir_data);
  DCHECK_GE(icon_dir_size, sizeof(GRPICONDIR));

  const GRPICONDIR* icon_dir =
      reinterpret_cast<const GRPICONDIR*>(icon_dir_data);
  std::unique_ptr<gfx::ImageFamily> result(new gfx::ImageFamily);
  for (size_t i = 0; i < icon_dir->idCount; ++i) {
    const GRPICONDIRENTRY* entry = &icon_dir->idEntries[i];
    if (entry->bWidth != 0 || entry->bHeight != 0) {
      // Ignore the low-bit-depth versions of the icon.
      if (entry->wBitCount != 32)
        continue;

      // For everything except the Vista+ 256x256 icons, use |LoadImage()|.
      base::win::ScopedHICON icon_handle(static_cast<HICON>(LoadImage(
          module, MAKEINTRESOURCE(resource_id), IMAGE_ICON, entry->bWidth,
          entry->bHeight, LR_DEFAULTCOLOR | LR_DEFAULTSIZE)));
      result->Add(gfx::Image::CreateFrom1xBitmap(
          IconUtil::CreateSkBitmapFromHICON(icon_handle.get())));
    } else {
      // 256x256 icons are stored with width and height set to 0.
      // See: http://en.wikipedia.org/wiki/ICO_(file_format)
      void* png_data = nullptr;
      size_t png_size = 0;
      if (!base::win::GetResourceFromModule(module, entry->nID, RT_ICON,
                                            &png_data, &png_size)) {
        return nullptr;
      }
      DCHECK(png_data);
      DCHECK_EQ(png_size, entry->dwBytesInRes);

      result->Add(gfx::Image::CreateFrom1xPNGBytes(
          new base::RefCountedStaticMemory(png_data, png_size)));
    }
  }
  return result;
}

SkBitmap IconUtil::CreateSkBitmapFromHICON(HICON icon) {
  // We start with validating parameters.
  if (!icon)
    return SkBitmap();

  ScopedICONINFO icon_info;
  BITMAP bitmap_info = { 0 };

  if (!::GetIconInfo(icon, &icon_info))
    return SkBitmap();

  if (!::GetObject(icon_info.hbmMask, sizeof(bitmap_info), &bitmap_info))
    return SkBitmap();

  // For non-color cursors, the mask contains both an AND and an XOR mask and
  // the height includes both. Thus, the mask width is the same as image width,
  // but we need to divide mask height by 2 to get the image height.
  const int height = bitmap_info.bmHeight / (icon_info.hbmColor ? 1 : 2);
  gfx::Size icon_size(bitmap_info.bmWidth, height);
  return CreateSkBitmapFromHICONHelper(icon, icon_size);
}

base::win::ScopedHICON IconUtil::CreateCursorFromSkBitmap(
    const SkBitmap& bitmap,
    const gfx::Point& hotspot) {
  if (bitmap.empty())
    return base::win::ScopedHICON();

  // Only 32 bit ARGB bitmaps are supported.
  if (bitmap.colorType() != kN32_SkColorType) {
    NOTIMPLEMENTED() << " unsupported color type: " << bitmap.colorType();
    return base::win::ScopedHICON();
  }

  BITMAPINFO icon_bitmap_info = {};
  skia::CreateBitmapHeaderForN32SkBitmap(
      bitmap, reinterpret_cast<BITMAPINFOHEADER*>(&icon_bitmap_info));

  base::win::ScopedCreateDC working_dc;
  base::win::ScopedBitmap bitmap_handle;
  {
    base::win::ScopedGetDC dc(nullptr);
    working_dc = base::win::ScopedCreateDC(CreateCompatibleDC(dc));
    bitmap_handle = base::win::ScopedBitmap(
        CreateDIBSection(dc, &icon_bitmap_info, DIB_RGB_COLORS, 0, 0, 0));
  }
  SetDIBits(0, bitmap_handle.get(), 0, bitmap.height(), bitmap.getPixels(),
            &icon_bitmap_info, DIB_RGB_COLORS);

  HBITMAP old_bitmap = reinterpret_cast<HBITMAP>(
      SelectObject(working_dc.Get(), bitmap_handle.get()));
  SetBkMode(working_dc.Get(), TRANSPARENT);
  SelectObject(working_dc.Get(), old_bitmap);

  base::win::ScopedBitmap mask(
      CreateBitmap(bitmap.width(), bitmap.height(), 1, 1, nullptr));
  ICONINFO ii = {0};
  ii.fIcon = FALSE;
  ii.xHotspot = hotspot.x();
  ii.yHotspot = hotspot.y();
  ii.hbmMask = mask.get();
  ii.hbmColor = bitmap_handle.get();

  return base::win::ScopedHICON(CreateIconIndirect(&ii));
}

gfx::Point IconUtil::GetHotSpotFromHICON(HICON icon) {
  ScopedICONINFO icon_info;
  gfx::Point hotspot;
  if (::GetIconInfo(icon, &icon_info))
    hotspot = gfx::Point(icon_info.xHotspot, icon_info.yHotspot);

  return hotspot;
}

// static
SkBitmap IconUtil::CreateSkBitmapFromHICONHelper(HICON icon,
                                                 const gfx::Size& s) {
  DCHECK(icon);
  DCHECK(!s.IsEmpty());

  // Allocating memory for the SkBitmap object. We are going to create an ARGB
  // bitmap so we should set the configuration appropriately.
  SkBitmap bitmap;
  bitmap.allocN32Pixels(s.width(), s.height());
  bitmap.eraseARGB(0, 0, 0, 0);

  // Now we should create a DIB so that we can use ::DrawIconEx in order to
  // obtain the icon's image.
  BITMAPV5HEADER h;
  InitializeBitmapHeader(&h, s.width(), s.height());
  void* bits;
  base::win::ScopedBitmap dib;
  base::win::ScopedCreateDC dib_dc;
  {
    base::win::ScopedGetDC hdc(nullptr);
    dib = base::win::ScopedBitmap(
        ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&h),
                           DIB_RGB_COLORS, &bits, nullptr, 0));
    dib_dc = base::win::ScopedCreateDC(CreateCompatibleDC(hdc));
  }
  DCHECK(dib.is_valid());
  DCHECK(dib_dc.IsValid());
  HGDIOBJ old_obj = ::SelectObject(dib_dc.Get(), dib.get());

  // Windows icons are defined using two different masks. The XOR mask, which
  // represents the icon image and an AND mask which is a monochrome bitmap
  // which indicates the transparency of each pixel.
  //
  // To make things more complex, the icon image itself can be an ARGB bitmap
  // and therefore contain an alpha channel which specifies the transparency
  // for each pixel. Unfortunately, there is no easy way to determine whether
  // or not a bitmap has an alpha channel and therefore constructing the bitmap
  // for the icon is nothing but straightforward.
  //
  // The idea is to read the AND mask but use it only if we know for sure that
  // the icon image does not have an alpha channel. The only way to tell if the
  // bitmap has an alpha channel is by looking through the pixels and checking
  // whether there are non-zero alpha bytes.
  //
  // We start by drawing the AND mask into our DIB.
  size_t num_pixels = s.GetArea();
  memset(bits, 0, num_pixels * 4);
  ::DrawIconEx(dib_dc.Get(), 0, 0, icon, s.width(), s.height(), 0, nullptr,
               DI_MASK);

  // Capture boolean opacity. We may not use it if we find out the bitmap has
  // an alpha channel.
  auto opaque = base::HeapArray<bool>::Uninit(num_pixels);
  for (size_t i = 0; i < num_pixels; ++i)
    opaque[i] = !static_cast<uint32_t*>(bits)[i];

  // Then draw the image itself which is really the XOR mask.
  memset(bits, 0, num_pixels * 4);
  ::DrawIconEx(dib_dc.Get(), 0, 0, icon, s.width(), s.height(), 0, nullptr,
               DI_NORMAL);
  memcpy(bitmap.getPixels(), bits, num_pixels * 4);

  // Finding out whether the bitmap has an alpha channel.
  bool bitmap_has_alpha_channel = PixelsHaveAlpha(
      static_cast<const uint32_t*>(bitmap.getPixels()), num_pixels);

  // If the bitmap does not have an alpha channel, we need to build it using
  // the previously captured AND mask. Otherwise, we are done.
  if (!bitmap_has_alpha_channel) {
    uint32_t* p = static_cast<uint32_t*>(bitmap.getPixels());
    for (size_t i = 0; i < num_pixels; ++p, ++i) {
      DCHECK_EQ((*p & 0xff000000), 0u);
      if (opaque[i])
        *p |= 0xff000000;
      else
        *p &= 0x00ffffff;
    }
  }

  ::SelectObject(dib_dc.Get(), old_obj);

  return bitmap;
}

// static
bool IconUtil::CreateIconFileFromImageFamily(
    const gfx::ImageFamily& image_family,
    const base::FilePath& icon_path,
    WriteType write_type) {
  // Creating a set of bitmaps corresponding to the icon images we'll end up
  // storing in the icon file. Each bitmap is created by resizing the most
  // appropriate image from |image_family| to the desired size.
  gfx::ImageFamily resized_image_family;
  if (!BuildResizedImageFamily(image_family, &resized_image_family))
    return false;

  std::vector<SkBitmap> bitmaps;
  scoped_refptr<base::RefCountedMemory> png_bytes;
  ConvertImageFamilyToBitmaps(resized_image_family, &bitmaps, &png_bytes);

  // Guaranteed true because BuildResizedImageFamily will provide at least one
  // image < 256x256.
  DCHECK(!bitmaps.empty());
  // ICONDIR's idCount is a WORD, so check for overflow.
  DCHECK_LE(bitmaps.size(),
            static_cast<size_t>(USHRT_MAX - (png_bytes.get() ? 1 : 0)));
  WORD bitmap_count =
      static_cast<WORD>(bitmaps.size());  // Not including PNG image.
  // Including PNG image, if any.
  WORD image_count = bitmap_count + (png_bytes.get() ? 1 : 0);

  // Computing the total size of the buffer we need in order to store the
  // images in the desired icon format.
  size_t buffer_size = ComputeIconFileBufferSize(bitmaps);
  // Account for the bytes needed for the PNG entry.
  if (png_bytes.get())
    buffer_size += sizeof(ICONDIRENTRY) + png_bytes->size();

  // Setting the information in the structures residing within the buffer.
  // First, we set the information which doesn't require iterating through the
  // bitmap set and then we set the bitmap specific structures. In the latter
  // step we also copy the actual bits.
  std::vector<uint8_t> buffer(buffer_size);
  ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(&buffer[0]);
  icon_dir->idType = kResourceTypeIcon;
  icon_dir->idCount = image_count;
  // - 1 because there is already one ICONDIRENTRY in ICONDIR.
  DWORD icon_dir_count = image_count - 1;

  DWORD offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count);
  for (size_t i = 0; i < bitmap_count; i++) {
    ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(&buffer[offset]);
    DCHECK_LT(offset, buffer_size);
    size_t icon_image_size = 0;
    SetSingleIconImageInformation(bitmaps[i], i, icon_dir, image, offset,
                                  &icon_image_size);
    DCHECK_GT(icon_image_size, 0U);
    offset += icon_image_size;
  }

  // Add the PNG entry, if necessary.
  if (png_bytes.get()) {
    ICONDIRENTRY* entry = &icon_dir->idEntries[bitmap_count];
    entry->bWidth = 0;
    entry->bHeight = 0;
    entry->wPlanes = 1;
    entry->wBitCount = 32;
    entry->dwBytesInRes = static_cast<DWORD>(png_bytes->size());
    entry->dwImageOffset = offset;
    memcpy(&buffer[offset], png_bytes->front(), png_bytes->size());
    offset += png_bytes->size();
  }

  DCHECK_EQ(offset, buffer_size);

  if (write_type == NORMAL_WRITE) {
    if (base::WriteFile(icon_path, buffer))
      return true;
    bool delete_success = base::DeleteFile(icon_path);
    DCHECK(delete_success);
    return false;
  }

  std::string data(buffer.begin(), buffer.end());
  return base::ImportantFileWriter::WriteFileAtomically(icon_path, data);
}

bool IconUtil::PixelsHaveAlpha(const uint32_t* pixels, size_t num_pixels) {
  for (const uint32_t* end = pixels + num_pixels; pixels != end; ++pixels) {
    if ((*pixels & 0xff000000) != 0)
      return true;
  }

  return false;
}

void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width,
                                      int height) {
  DCHECK(header);
  memset(header, 0, sizeof(BITMAPV5HEADER));
  header->bV5Size = sizeof(BITMAPV5HEADER);

  // Note that icons are created using top-down DIBs so we must negate the
  // value used for the icon's height.
  header->bV5Width = width;
  header->bV5Height = -height;
  header->bV5Planes = 1;
  header->bV5Compression = BI_RGB;

  // Initializing the bitmap format to 32 bit ARGB.
  header->bV5BitCount = 32;
  header->bV5RedMask = 0x00FF0000;
  header->bV5GreenMask = 0x0000FF00;
  header->bV5BlueMask = 0x000000FF;
  header->bV5AlphaMask = 0xFF000000;

  // Use the system color space.  The default value is LCS_CALIBRATED_RGB, which
  // causes us to crash if we don't specify the approprite gammas, etc.  See
  // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and
  // <http://b/1283121>.
  header->bV5CSType = LCS_WINDOWS_COLOR_SPACE;

  // Use a valid value for bV5Intent as 0 is not a valid one.
  // <http://msdn.microsoft.com/en-us/library/dd183381(VS.85).aspx>
  header->bV5Intent = LCS_GM_IMAGES;
}

void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap,
                                             size_t index,
                                             ICONDIR* icon_dir,
                                             ICONIMAGE* icon_image,
                                             DWORD image_offset,
                                             size_t* image_byte_count) {
  DCHECK(icon_dir);
  DCHECK(icon_image);
  DCHECK_GT(image_offset, 0U);
  DCHECK(image_byte_count);
  DCHECK_LT(bitmap.width(), kLargeIconSize);
  DCHECK_LT(bitmap.height(), kLargeIconSize);

  // We start by computing certain image values we'll use later on.
  size_t xor_mask_size;
  DWORD bytes_in_resource;
  ComputeBitmapSizeComponents(bitmap,
                              &xor_mask_size,
                              &bytes_in_resource);

  icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width());
  icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height());
  icon_dir->idEntries[index].wPlanes = 1;
  icon_dir->idEntries[index].wBitCount = 32;
  icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource;
  icon_dir->idEntries[index].dwImageOffset = image_offset;
  icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER);

  // The width field in the BITMAPINFOHEADER structure accounts for the height
  // of both the AND mask and the XOR mask so we need to multiply the bitmap's
  // height by 2. The same does NOT apply to the width field.
  icon_image->icHeader.biHeight = bitmap.height() * 2;
  icon_image->icHeader.biWidth = bitmap.width();
  icon_image->icHeader.biPlanes = 1;
  icon_image->icHeader.biBitCount = 32;

  // We use a helper function for copying to actual bits from the SkBitmap
  // object into the appropriate space in the buffer. We use a helper function
  // (rather than just copying the bits) because there is no way to specify the
  // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file.
  // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in
  // the .ico file which will result in the icon being displayed upside down.
  // The helper function copies the image into the buffer one scanline at a
  // time.
  //
  // Note that we don't need to initialize the AND mask since the memory
  // allocated for the icon data buffer was initialized to zero. The icon we
  // create will therefore use an AND mask containing only zeros, which is OK
  // because the underlying image has an alpha channel. An AND mask containing
  // only zeros essentially means we'll initially treat all the pixels as
  // opaque.
  unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image);
  unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER);

  // Make sure pixels are not premultiplied by alpha.
  SkBitmap unpremul_bitmap = SkBitmapOperations::UnPreMultiply(bitmap);
  CopySkBitmapBitsIntoIconBuffer(unpremul_bitmap, xor_mask_addr, xor_mask_size);

  *image_byte_count = bytes_in_resource;
}

void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap,
                                              unsigned char* buffer,
                                              size_t buffer_size) {
  unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels());
  size_t bitmap_size = bitmap.height() * bitmap.width() * 4;
  DCHECK_EQ(buffer_size, bitmap_size);
  for (size_t i = 0; i < bitmap_size; i += bitmap.width() * 4) {
    memcpy(buffer + bitmap_size - bitmap.width() * 4 - i,
           bitmap_ptr + i,
           bitmap.width() * 4);
  }
}

size_t IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) {
  DCHECK(!set.empty());

  // We start by counting the bytes for the structures that don't depend on the
  // number of icon images. Note that sizeof(ICONDIR) already accounts for a
  // single ICONDIRENTRY structure, which is why we subtract one from the
  // number of bitmaps.
  size_t total_buffer_size = sizeof(ICONDIR);
  size_t bitmap_count = set.size();
  total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1);
  // May not have all icon sizes, but must have at least up to medium icon size.
  DCHECK_GE(bitmap_count, kNumIconDimensionsUpToMediumSize);

  // Add the bitmap specific structure sizes.
  for (size_t i = 0; i < bitmap_count; i++) {
    size_t xor_mask_size;
    DWORD bytes_in_resource;
    ComputeBitmapSizeComponents(set[i],
                                &xor_mask_size,
                                &bytes_in_resource);
    total_buffer_size += bytes_in_resource;
  }
  return total_buffer_size;
}

void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap,
                                           size_t* xor_mask_size,
                                           DWORD* bytes_in_resource) {
  // The XOR mask size is easy to calculate since we only deal with 32bpp
  // images.
  *xor_mask_size = bitmap.width() * bitmap.height() * 4;

  // Computing the AND mask is a little trickier since it is a monochrome
  // bitmap (regardless of the number of bits per pixels used in the XOR mask).
  // There are two things we must make sure we do when computing the AND mask
  // size:
  //
  // 1. Make sure the right number of bytes is allocated for each AND mask
  //    scan line in case the number of pixels in the image is not divisible by
  //    8. For example, in a 15X15 image, 15 / 8 is one byte short of
  //    containing the number of bits we need in order to describe a single
  //    image scan line so we need to add a byte. Thus, we need 2 bytes instead
  //    of 1 for each scan line.
  //
  // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the
  //    total icon image has a 4 byte alignment). In the 15X15 image example
  //    above, we can not use 2 bytes so we increase it to the next multiple of
  //    4 which is 4.
  //
  // Once we compute the size for a singe AND mask scan line, we multiply that
  // number by the image height in order to get the total number of bytes for
  // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes
  // for the monochrome bitmap representing the AND mask.
  size_t and_line_length = (bitmap.width() + 7) >> 3;
  and_line_length = (and_line_length + 3) & ~3;
  size_t and_mask_size = and_line_length * bitmap.height();
  size_t masks_size = *xor_mask_size + and_mask_size;
  *bytes_in_resource =
      static_cast<DWORD>(masks_size + sizeof(BITMAPINFOHEADER));
}