// Copyright 2003-2009 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #ifndef RE2_RE2_H_ #define RE2_RE2_H_ // C++ interface to the re2 regular-expression library. // RE2 supports Perl-style regular expressions (with extensions like // \d, \w, \s, ...). // // ----------------------------------------------------------------------- // REGEXP SYNTAX: // // This module uses the re2 library and hence supports // its syntax for regular expressions, which is similar to Perl's with // some of the more complicated things thrown away. In particular, // backreferences and generalized assertions are not available, nor is \Z. // // See https://github.com/google/re2/wiki/Syntax for the syntax // supported by RE2, and a comparison with PCRE and PERL regexps. // // For those not familiar with Perl's regular expressions, // here are some examples of the most commonly used extensions: // // "hello (\\w+) world" -- \w matches a "word" character // "version (\\d+)" -- \d matches a digit // "hello\\s+world" -- \s matches any whitespace character // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary // "(?i)hello" -- (?i) turns on case-insensitive matching // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible // // The double backslashes are needed when writing C++ string literals. // However, they should NOT be used when writing C++11 raw string literals: // // R"(hello (\w+) world)" -- \w matches a "word" character // R"(version (\d+))" -- \d matches a digit // R"(hello\s+world)" -- \s matches any whitespace character // R"(\b(\w+)\b)" -- \b matches non-empty string at word boundary // R"((?i)hello)" -- (?i) turns on case-insensitive matching // R"(/\*(.*?)\*/)" -- .*? matches . minimum no. of times possible // // When using UTF-8 encoding, case-insensitive matching will perform // simple case folding, not full case folding. // // ----------------------------------------------------------------------- // MATCHING INTERFACE: // // The "FullMatch" operation checks that supplied text matches a // supplied pattern exactly. // // Example: successful match // ABSL_CHECK(RE2::FullMatch("hello", "h.*o")); // // Example: unsuccessful match (requires full match): // ABSL_CHECK(!RE2::FullMatch("hello", "e")); // // ----------------------------------------------------------------------- // UTF-8 AND THE MATCHING INTERFACE: // // By default, the pattern and input text are interpreted as UTF-8. // The RE2::Latin1 option causes them to be interpreted as Latin-1. // // Example: // ABSL_CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); // ABSL_CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, // RE2::Latin1))); // // ----------------------------------------------------------------------- // SUBMATCH EXTRACTION: // // You can supply extra pointer arguments to extract submatches. // On match failure, none of the pointees will have been modified. // On match success, the submatches will be converted (as necessary) and // their values will be assigned to their pointees until all conversions // have succeeded or one conversion has failed. // On conversion failure, the pointees will be in an indeterminate state // because the caller has no way of knowing which conversion failed. // However, conversion cannot fail for types like string and string_view // that do not inspect the submatch contents. Hence, in the common case // where all of the pointees are of such types, failure is always due to // match failure and thus none of the pointees will have been modified. // // Example: extracts "ruby" into "s" and 1234 into "i" // int i; // std::string s; // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); // // Example: extracts "ruby" into "s" and no value into "i" // absl::optional<int> i; // std::string s; // ABSL_CHECK(RE2::FullMatch("ruby", "(\\w+)(?::(\\d+))?", &s, &i)); // // Example: fails because string cannot be stored in integer // ABSL_CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); // // Example: fails because there aren't enough sub-patterns // ABSL_CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); // // Example: does not try to extract any extra sub-patterns // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); // // Example: does not try to extract into NULL // ABSL_CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); // // Example: integer overflow causes failure // ABSL_CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); // // NOTE(rsc): Asking for submatches slows successful matches quite a bit. // This may get a little faster in the future, but right now is slower // than PCRE. On the other hand, failed matches run *very* fast (faster // than PCRE), as do matches without submatch extraction. // // ----------------------------------------------------------------------- // PARTIAL MATCHES // // You can use the "PartialMatch" operation when you want the pattern // to match any substring of the text. // // Example: simple search for a string: // ABSL_CHECK(RE2::PartialMatch("hello", "ell")); // // Example: find first number in a string // int number; // ABSL_CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); // ABSL_CHECK_EQ(number, 100); // // ----------------------------------------------------------------------- // PRE-COMPILED REGULAR EXPRESSIONS // // RE2 makes it easy to use any string as a regular expression, without // requiring a separate compilation step. // // If speed is of the essence, you can create a pre-compiled "RE2" // object from the pattern and use it multiple times. If you do so, // you can typically parse text faster than with sscanf. // // Example: precompile pattern for faster matching: // RE2 pattern("h.*o"); // while (ReadLine(&str)) { // if (RE2::FullMatch(str, pattern)) ...; // } // // ----------------------------------------------------------------------- // SCANNING TEXT INCREMENTALLY // // The "Consume" operation may be useful if you want to repeatedly // match regular expressions at the front of a string and skip over // them as they match. This requires use of the string_view type, // which represents a sub-range of a real string. // // Example: read lines of the form "var = value" from a string. // std::string contents = ...; // Fill string somehow // absl::string_view input(contents); // Wrap a string_view around it // // std::string var; // int value; // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { // ...; // } // // Each successful call to "Consume" will set "var/value", and also // advance "input" so it points past the matched text. Note that if the // regular expression matches an empty string, input will advance // by 0 bytes. If the regular expression being used might match // an empty string, the loop body must check for this case and either // advance the string or break out of the loop. // // The "FindAndConsume" operation is similar to "Consume" but does not // anchor your match at the beginning of the string. For example, you // could extract all words from a string by repeatedly calling // RE2::FindAndConsume(&input, "(\\w+)", &word) // // ----------------------------------------------------------------------- // USING VARIABLE NUMBER OF ARGUMENTS // // The above operations require you to know the number of arguments // when you write the code. This is not always possible or easy (for // example, the regular expression may be calculated at run time). // You can use the "N" version of the operations when the number of // match arguments are determined at run time. // // Example: // const RE2::Arg* args[10]; // int n; // // ... populate args with pointers to RE2::Arg values ... // // ... set n to the number of RE2::Arg objects ... // bool match = RE2::FullMatchN(input, pattern, args, n); // // The last statement is equivalent to // // bool match = RE2::FullMatch(input, pattern, // *args[0], *args[1], ..., *args[n - 1]); // // ----------------------------------------------------------------------- // PARSING HEX/OCTAL/C-RADIX NUMBERS // // By default, if you pass a pointer to a numeric value, the // corresponding text is interpreted as a base-10 number. You can // instead wrap the pointer with a call to one of the operators Hex(), // Octal(), or CRadix() to interpret the text in another base. The // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) // prefixes, but defaults to base-10. // // Example: // int a, b, c, d; // ABSL_CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); // will leave 64 in a, b, c, and d. #include <stddef.h> #include <stdint.h> #include <algorithm> #include <map> #include <string> #include <type_traits> #include <vector> #include "absl/base/call_once.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "re2/stringpiece.h" #if defined(__APPLE__) #include <TargetConditionals.h> #endif namespace re2 { class Prog; class Regexp; } // namespace re2 namespace re2 { // Interface for regular expression matching. Also corresponds to a // pre-compiled regular expression. An "RE2" object is safe for // concurrent use by multiple threads. class RE2 { … }; /***** Implementation details *****/ namespace re2_internal { // Types for which the 3-ary Parse() function template has specializations. template <typename T> struct Parse3ary : public std::false_type { … }; template <> struct Parse3ary<void> : public std::true_type { … }; template <> struct Parse3ary<std::string> : public std::true_type { … }; template <> struct Parse3ary<absl::string_view> : public std::true_type { … }; template <> struct Parse3ary<char> : public std::true_type { … }; template <> struct Parse3ary<signed char> : public std::true_type { … }; template <> struct Parse3ary<unsigned char> : public std::true_type { … }; template <> struct Parse3ary<float> : public std::true_type { … }; template <> struct Parse3ary<double> : public std::true_type { … }; template <typename T> bool Parse(const char* str, size_t n, T* dest); // Types for which the 4-ary Parse() function template has specializations. template <typename T> struct Parse4ary : public std::false_type { … }; template <> struct Parse4ary<long> : public std::true_type { … }; template <> struct Parse4ary<unsigned long> : public std::true_type { … }; template <> struct Parse4ary<short> : public std::true_type { … }; template <> struct Parse4ary<unsigned short> : public std::true_type { … }; template <> struct Parse4ary<int> : public std::true_type { … }; template <> struct Parse4ary<unsigned int> : public std::true_type { … }; template <> struct Parse4ary<long long> : public std::true_type { … }; template <> struct Parse4ary<unsigned long long> : public std::true_type { … }; template <typename T> bool Parse(const char* str, size_t n, T* dest, int radix); // Support absl::optional<T> for all T with a stock parser. Parse3ary<absl::optional<T>>; Parse4ary<absl::optional<T>>; template <typename T> bool Parse(const char* str, size_t n, absl::optional<T>* dest) { … } template <typename T> bool Parse(const char* str, size_t n, absl::optional<T>* dest, int radix) { … } } // namespace re2_internal class RE2::Arg { … }; template <typename T> inline RE2::Arg RE2::CRadix(T* ptr) { … } template <typename T> inline RE2::Arg RE2::Hex(T* ptr) { … } template <typename T> inline RE2::Arg RE2::Octal(T* ptr) { … } // Silence warnings about missing initializers for members of LazyRE2. #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wmissing-field-initializers" #endif // Helper for writing global or static RE2s safely. // Write // static LazyRE2 re = {".*"}; // and then use *re instead of writing // static RE2 re(".*"); // The former is more careful about multithreaded // situations than the latter. // // N.B. This class never deletes the RE2 object that // it constructs: that's a feature, so that it can be used // for global and function static variables. class LazyRE2 { … }; hooks // namespace hooks } // namespace re2 RE2; LazyRE2; #endif // RE2_RE2_H_