/*===----------------- keylockerintrin.h - KL Intrinsics -------------------=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error "Never use <keylockerintrin.h> directly; include <immintrin.h> instead." #endif #ifndef _KEYLOCKERINTRIN_H #define _KEYLOCKERINTRIN_H #if !defined(__SCE__) || __has_feature(modules) || defined(__KL__) /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS … /// Load internal wrapping key from __intkey, __enkey_lo and __enkey_hi. __ctl /// will assigned to EAX, whch specifies the KeySource and whether backing up /// the key is permitted. The 256-bit encryption key is loaded from the two /// explicit operands (__enkey_lo and __enkey_hi). The 128-bit integrity key is /// loaded from the implicit operand XMM0 which assigned by __intkey. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> LOADIWKEY </c> instructions. /// /// \code{.operation} /// IF CPL > 0 // LOADKWKEY only allowed at ring 0 (supervisor mode) /// GP (0) /// FI /// IF “LOADIWKEY exiting” VM execution control set /// VMexit /// FI /// IF __ctl[4:1] > 1 // Reserved KeySource encoding used /// GP (0) /// FI /// IF __ctl[31:5] != 0 // Reserved bit in __ctl is set /// GP (0) /// FI /// IF __ctl[0] AND (CPUID.19H.ECX[0] == 0) // NoBackup is not supported on this part /// GP (0) /// FI /// IF (__ctl[4:1] == 1) AND (CPUID.19H.ECX[1] == 0) // KeySource of 1 is not supported on this part /// GP (0) /// FI /// IF (__ctl[4:1] == 0) // KeySource of 0. /// IWKey.Encryption Key[127:0] := __enkey_hi[127:0]: /// IWKey.Encryption Key[255:128] := __enkey_lo[127:0] /// IWKey.IntegrityKey[127:0] := __intkey[127:0] /// IWKey.NoBackup := __ctl[0] /// IWKey.KeySource := __ctl[4:1] /// ZF := 0 /// ELSE // KeySource of 1. See RDSEED definition for details of randomness /// IF HW_NRND_GEN.ready == 1 // Full-entropy random data from RDSEED was received /// IWKey.Encryption Key[127:0] := __enkey_hi[127:0] XOR HW_NRND_GEN.data[127:0] /// IWKey.Encryption Key[255:128] := __enkey_lo[127:0] XOR HW_NRND_GEN.data[255:128] /// IWKey.Encryption Key[255:0] := __enkey_hi[127:0]:__enkey_lo[127:0] XOR HW_NRND_GEN.data[255:0] /// IWKey.IntegrityKey[127:0] := __intkey[127:0] XOR HW_NRND_GEN.data[383:256] /// IWKey.NoBackup := __ctl[0] /// IWKey.KeySource := __ctl[4:1] /// ZF := 0 /// ELSE // Random data was not returned from RDSEED. IWKey was not loaded /// ZF := 1 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ void __DEFAULT_FN_ATTRS _mm_loadiwkey (unsigned int __ctl, __m128i __intkey, __m128i __enkey_lo, __m128i __enkey_hi) { … } /// Wrap a 128-bit AES key from __key into a key handle and output in /// ((__m128i*)__h) to ((__m128i*)__h) + 2 and a 32-bit value as return. /// The explicit source operand __htype specifies handle restrictions. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> ENCODEKEY128 </c> instructions. /// /// \code{.operation} /// InputKey[127:0] := __key[127:0] /// KeyMetadata[2:0] := __htype[2:0] /// KeyMetadata[23:3] := 0 // Reserved for future usage /// KeyMetadata[27:24] := 0 // KeyType is AES-128 (value of 0) /// KeyMetadata[127:28] := 0 // Reserved for future usage /// Handle[383:0] := WrapKey128(InputKey[127:0], KeyMetadata[127:0], /// IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0]) /// dst[0] := IWKey.NoBackup /// dst[4:1] := IWKey.KeySource[3:0] /// dst[31:5] := 0 /// MEM[__h+127:__h] := Handle[127:0] // AAD /// MEM[__h+255:__h+128] := Handle[255:128] // Integrity Tag /// MEM[__h+383:__h+256] := Handle[383:256] // CipherText /// OF := 0 /// SF := 0 /// ZF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned int __DEFAULT_FN_ATTRS _mm_encodekey128_u32(unsigned int __htype, __m128i __key, void *__h) { … } /// Wrap a 256-bit AES key from __key_hi:__key_lo into a key handle, then /// output handle in ((__m128i*)__h) to ((__m128i*)__h) + 3 and /// a 32-bit value as return. /// The explicit source operand __htype specifies handle restrictions. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> ENCODEKEY256 </c> instructions. /// /// \code{.operation} /// InputKey[127:0] := __key_lo[127:0] /// InputKey[255:128] := __key_hi[255:128] /// KeyMetadata[2:0] := __htype[2:0] /// KeyMetadata[23:3] := 0 // Reserved for future usage /// KeyMetadata[27:24] := 1 // KeyType is AES-256 (value of 1) /// KeyMetadata[127:28] := 0 // Reserved for future usage /// Handle[511:0] := WrapKey256(InputKey[255:0], KeyMetadata[127:0], /// IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0]) /// dst[0] := IWKey.NoBackup /// dst[4:1] := IWKey.KeySource[3:0] /// dst[31:5] := 0 /// MEM[__h+127:__h] := Handle[127:0] // AAD /// MEM[__h+255:__h+128] := Handle[255:128] // Tag /// MEM[__h+383:__h+256] := Handle[383:256] // CipherText[127:0] /// MEM[__h+511:__h+384] := Handle[511:384] // CipherText[255:128] /// OF := 0 /// SF := 0 /// ZF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned int __DEFAULT_FN_ATTRS _mm_encodekey256_u32(unsigned int __htype, __m128i __key_lo, __m128i __key_hi, void *__h) { … } /// The AESENC128KL performs 10 rounds of AES to encrypt the __idata using /// the 128-bit key in the handle from the __h. It stores the result in the /// __odata. And return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESENC128KL </c> instructions. /// /// \code{.operation} /// Handle[383:0] := MEM[__h+383:__h] // Load is not guaranteed to be atomic. /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[383:256] || /// HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128 ) /// IF (IllegalHandle) /// ZF := 1 /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey) /// IF (Authentic == 0) /// ZF := 1 /// ELSE /// MEM[__odata+127:__odata] := AES128Encrypt (__idata[127:0], UnwrappedKey) /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesenc128kl_u8(__m128i* __odata, __m128i __idata, const void *__h) { … } /// The AESENC256KL performs 14 rounds of AES to encrypt the __idata using /// the 256-bit key in the handle from the __h. It stores the result in the /// __odata. And return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESENC256KL </c> instructions. /// /// \code{.operation} /// Handle[511:0] := MEM[__h+511:__h] // Load is not guaranteed to be atomic. /// IllegalHandle := ( HandleReservedBitSet (Handle[511:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[255:128] || /// HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES256 ) /// IF (IllegalHandle) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey) /// IF (Authentic == 0) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// MEM[__odata+127:__odata] := AES256Encrypt (__idata[127:0], UnwrappedKey) /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesenc256kl_u8(__m128i* __odata, __m128i __idata, const void *__h) { … } /// The AESDEC128KL performs 10 rounds of AES to decrypt the __idata using /// the 128-bit key in the handle from the __h. It stores the result in the /// __odata. And return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESDEC128KL </c> instructions. /// /// \code{.operation} /// Handle[383:0] := MEM[__h+383:__h] // Load is not guaranteed to be atomic. /// IllegalHandle := (HandleReservedBitSet (Handle[383:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[383:256] || /// HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128) /// IF (IllegalHandle) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey) /// IF (Authentic == 0) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// MEM[__odata+127:__odata] := AES128Decrypt (__idata[127:0], UnwrappedKey) /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesdec128kl_u8(__m128i* __odata, __m128i __idata, const void *__h) { … } /// The AESDEC256KL performs 10 rounds of AES to decrypt the __idata using /// the 256-bit key in the handle from the __h. It stores the result in the /// __odata. And return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESDEC256KL </c> instructions. /// /// \code{.operation} /// Handle[511:0] := MEM[__h+511:__h] /// IllegalHandle := (HandleReservedBitSet (Handle[511:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[383:256] || /// HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES256) /// IF (IllegalHandle) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey) /// IF (Authentic == 0) /// ZF := 1 /// MEM[__odata+127:__odata] := 0 /// ELSE /// MEM[__odata+127:__odata] := AES256Decrypt (__idata[127:0], UnwrappedKey) /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesdec256kl_u8(__m128i* __odata, __m128i __idata, const void *__h) { … } #undef __DEFAULT_FN_ATTRS #endif /* !defined(__SCE__ || __has_feature(modules) || defined(__KL__) */ #if !defined(__SCE__) || __has_feature(modules) || defined(__WIDEKL__) /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS … /// Encrypt __idata[0] to __idata[7] using 128-bit AES key indicated by handle /// at __h and store each resultant block back from __odata to __odata+7. And /// return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESENCWIDE128KL </c> instructions. /// /// \code{.operation} /// Handle := MEM[__h+383:__h] /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[255:128] || /// HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128 ) /// IF (IllegalHandle) /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey) /// IF Authentic == 0 /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// FOR i := 0 to 7 /// __odata[i] := AES128Encrypt (__idata[i], UnwrappedKey) /// ENDFOR /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesencwide128kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) { … } /// Encrypt __idata[0] to __idata[7] using 256-bit AES key indicated by handle /// at __h and store each resultant block back from __odata to __odata+7. And /// return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESENCWIDE256KL </c> instructions. /// /// \code{.operation} /// Handle[511:0] := MEM[__h+511:__h] /// IllegalHandle := ( HandleReservedBitSet (Handle[511:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[255:128] || /// HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES512 ) /// IF (IllegalHandle) /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey) /// IF Authentic == 0 /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// FOR i := 0 to 7 /// __odata[i] := AES256Encrypt (__idata[i], UnwrappedKey) /// ENDFOR /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesencwide256kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) { … } /// Decrypt __idata[0] to __idata[7] using 128-bit AES key indicated by handle /// at __h and store each resultant block back from __odata to __odata+7. And /// return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESDECWIDE128KL </c> instructions. /// /// \code{.operation} /// Handle[383:0] := MEM[__h+383:__h] /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[255:128] || /// HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128 ) /// IF (IllegalHandle) /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey) /// IF Authentic == 0 /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// FOR i := 0 to 7 /// __odata[i] := AES128Decrypt (__idata[i], UnwrappedKey) /// ENDFOR /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesdecwide128kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) { … } /// Decrypt __idata[0] to __idata[7] using 256-bit AES key indicated by handle /// at __h and store each resultant block back from __odata to __odata+7. And /// return the affected ZF flag status. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the <c> AESDECWIDE256KL </c> instructions. /// /// \code{.operation} /// Handle[511:0] := MEM[__h+511:__h] /// IllegalHandle = ( HandleReservedBitSet (Handle[511:0]) || /// (Handle[127:0] AND (CPL > 0)) || /// Handle[255:128] || /// HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES512 ) /// If (IllegalHandle) /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey) /// IF Authentic == 0 /// ZF := 1 /// FOR i := 0 to 7 /// __odata[i] := 0 /// ENDFOR /// ELSE /// FOR i := 0 to 7 /// __odata[i] := AES256Decrypt (__idata[i], UnwrappedKey) /// ENDFOR /// ZF := 0 /// FI /// FI /// dst := ZF /// OF := 0 /// SF := 0 /// AF := 0 /// PF := 0 /// CF := 0 /// \endcode static __inline__ unsigned char __DEFAULT_FN_ATTRS _mm_aesdecwide256kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) { … } #undef __DEFAULT_FN_ATTRS #endif /* !defined(__SCE__) || __has_feature(modules) || defined(__WIDEKL__) \ */ #endif /* _KEYLOCKERINTRIN_H */