/*===--------- amxcomplexintrin.h - AMXCOMPLEX intrinsics -*- C++ -*---------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===------------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error "Never use <amxcomplexintrin.h> directly; include <immintrin.h> instead." #endif // __IMMINTRIN_H #ifndef __AMX_COMPLEXINTRIN_H #define __AMX_COMPLEXINTRIN_H #ifdef __x86_64__ #define __DEFAULT_FN_ATTRS_COMPLEX … /// Perform matrix multiplication of two tiles containing complex elements and /// accumulate the results into a packed single precision tile. Each dword /// element in input tiles \a a and \a b is interpreted as a complex number /// with FP16 real part and FP16 imaginary part. /// Calculates the imaginary part of the result. For each possible combination /// of (row of \a a, column of \a b), it performs a set of multiplication /// and accumulations on all corresponding complex numbers (one from \a a /// and one from \a b). The imaginary part of the \a a element is multiplied /// with the real part of the corresponding \a b element, and the real part /// of the \a a element is multiplied with the imaginary part of the /// corresponding \a b elements. The two accumulated results are added, and /// then accumulated into the corresponding row and column of \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// void _tile_cmmimfp16ps(__tile dst, __tile a, __tile b); /// \endcode /// /// \code{.operation} /// FOR m := 0 TO dst.rows - 1 /// tmp := dst.row[m] /// FOR k := 0 TO (a.colsb / 4) - 1 /// FOR n := 0 TO (dst.colsb / 4) - 1 /// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+1]) /// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+0]) /// ENDFOR /// ENDFOR /// write_row_and_zero(dst, m, tmp, dst.colsb) /// ENDFOR /// zero_upper_rows(dst, dst.rows) /// zero_tileconfig_start() /// \endcode /// /// This intrinsic corresponds to the \c TCMMIMFP16PS instruction. /// /// \param dst /// The destination tile. Max size is 1024 Bytes. /// \param a /// The 1st source tile. Max size is 1024 Bytes. /// \param b /// The 2nd source tile. Max size is 1024 Bytes. #define _tile_cmmimfp16ps(dst, a, b) … /// Perform matrix multiplication of two tiles containing complex elements and /// accumulate the results into a packed single precision tile. Each dword /// element in input tiles \a a and \a b is interpreted as a complex number /// with FP16 real part and FP16 imaginary part. /// Calculates the real part of the result. For each possible combination /// of (row of \a a, column of \a b), it performs a set of multiplication /// and accumulations on all corresponding complex numbers (one from \a a /// and one from \a b). The real part of the \a a element is multiplied /// with the real part of the corresponding \a b element, and the negated /// imaginary part of the \a a element is multiplied with the imaginary /// part of the corresponding \a b elements. The two accumulated results /// are added, and then accumulated into the corresponding row and column /// of \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// void _tile_cmmrlfp16ps(__tile dst, __tile a, __tile b); /// \endcode /// /// \code{.operation} /// FOR m := 0 TO dst.rows - 1 /// tmp := dst.row[m] /// FOR k := 0 TO (a.colsb / 4) - 1 /// FOR n := 0 TO (dst.colsb / 4) - 1 /// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+0]) /// tmp.fp32[n] += FP32(-a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+1]) /// ENDFOR /// ENDFOR /// write_row_and_zero(dst, m, tmp, dst.colsb) /// ENDFOR /// zero_upper_rows(dst, dst.rows) /// zero_tileconfig_start() /// \endcode /// /// This intrinsic corresponds to the \c TCMMIMFP16PS instruction. /// /// \param dst /// The destination tile. Max size is 1024 Bytes. /// \param a /// The 1st source tile. Max size is 1024 Bytes. /// \param b /// The 2nd source tile. Max size is 1024 Bytes. #define _tile_cmmrlfp16ps(dst, a, b) … static __inline__ _tile1024i __DEFAULT_FN_ATTRS_COMPLEX _tile_cmmimfp16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, _tile1024i src2) { … } static __inline__ _tile1024i __DEFAULT_FN_ATTRS_COMPLEX _tile_cmmrlfp16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, _tile1024i src2) { … } /// Perform matrix multiplication of two tiles containing complex elements and /// accumulate the results into a packed single precision tile. Each dword /// element in input tiles src0 and src1 is interpreted as a complex number with /// FP16 real part and FP16 imaginary part. /// This function calculates the imaginary part of the result. /// /// \headerfile <immintrin.h> /// /// This intrinsic corresponds to the <c> TCMMIMFP16PS </c> instruction. /// /// \param dst /// The destination tile. Max size is 1024 Bytes. /// \param src0 /// The 1st source tile. Max size is 1024 Bytes. /// \param src1 /// The 2nd source tile. Max size is 1024 Bytes. __DEFAULT_FN_ATTRS_COMPLEX static void __tile_cmmimfp16ps(__tile1024i *dst, __tile1024i src0, __tile1024i src1) { … } /// Perform matrix multiplication of two tiles containing complex elements and /// accumulate the results into a packed single precision tile. Each dword /// element in input tiles src0 and src1 is interpreted as a complex number with /// FP16 real part and FP16 imaginary part. /// This function calculates the real part of the result. /// /// \headerfile <immintrin.h> /// /// This intrinsic corresponds to the <c> TCMMRLFP16PS </c> instruction. /// /// \param dst /// The destination tile. Max size is 1024 Bytes. /// \param src0 /// The 1st source tile. Max size is 1024 Bytes. /// \param src1 /// The 2nd source tile. Max size is 1024 Bytes. __DEFAULT_FN_ATTRS_COMPLEX static void __tile_cmmrlfp16ps(__tile1024i *dst, __tile1024i src0, __tile1024i src1) { … } #endif // __x86_64__ #endif // __AMX_COMPLEXINTRIN_H