// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/fast_ink/laser/laser_segment_utils.h"
#include <cmath>
#include <limits>
#include "base/check_op.h"
#include "base/numerics/angle_conversions.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d_f.h"
namespace ash {
namespace {
// Solves the equation x = (-b (+|-) sqrt(b^2 - 4ac)) / 2a. |use_plus|
// determines whether + or - is used in the equation; if |use_plus| is true, +
// is used. |a| cannot be 0 (linear equation). Note: This does not handle the
// case where the roots are complex.
float QuadraticEquation(bool use_plus, float a, float b, float c) {
DCHECK_NE(0.0f, a);
return (-1.0f * b + sqrt(b * b - 4.0f * a * c) * (use_plus ? 1.0f : -1.0f)) /
(2.0f * a);
}
} // namespace
float AngleOfPointInNewCoordinates(const gfx::PointF& origin,
const gfx::Vector2dF& direction,
const gfx::PointF& point) {
double angle_degrees = base::RadToDeg(atan2(direction.y(), direction.x()));
gfx::Transform transform;
transform.Rotate(-angle_degrees);
transform.Translate(-origin.x(), -origin.y());
gfx::PointF point_to_transform = transform.MapPoint(point);
return atan2(point_to_transform.y(), point_to_transform.x());
}
void ComputeNormalLineVariables(const gfx::PointF& start_point,
const gfx::PointF& end_point,
float* normal_slope,
float* start_y_intercept,
float* end_y_intercept) {
float rise = end_point.y() - start_point.y();
float run = end_point.x() - start_point.x();
// If the rise of line between the two points is close to zero, the normal of
// the line is undefined.
if (fabs(rise) < 0.0001f) {
*normal_slope = std::numeric_limits<float>::quiet_NaN();
*start_y_intercept = std::numeric_limits<float>::quiet_NaN();
*end_y_intercept = std::numeric_limits<float>::quiet_NaN();
return;
}
*normal_slope = -1.0f * (run / rise);
*start_y_intercept = start_point.y() - *normal_slope * start_point.x();
*end_y_intercept = end_point.y() - *normal_slope * end_point.x();
}
void ComputeProjectedPoints(const gfx::PointF& point,
float line_slope,
float line_y_intercept,
float projection_distance,
gfx::PointF* first_projection,
gfx::PointF* second_projection) {
// If the slope is NaN, the y-intercept should be NaN too. The line is thus
// vertical and projections will be projected straight up/down from |point|.
if (std::isnan(line_slope)) {
DCHECK(std::isnan(line_y_intercept));
*first_projection =
gfx::PointF(point.x(), point.y() + round(projection_distance));
*second_projection =
gfx::PointF(point.x(), point.y() - round(projection_distance));
return;
}
// |point| must be on the line defined by |line_slope| and |line_y_intercept|.
DCHECK_LE(fabs(point.y() - (line_slope * point.x() + line_y_intercept)), 2.f);
// We want the two points along the line given by |slope|(m) and
// |y_intercept|(b). If |original_point| is defined as (x,y) and
// |distance_from_old_point| is d, we want the two (dx,dy) which satisfys the
// two equations (1)dx^2+dy^2=d^2 and (2)y+dy=m(x+dx)+b. Since y,x,b and m are
// constants we form a new equation (3)dy=mdx + K, where K=mx+b-y. Plugging
// (3) into (1) we get dx^2+(mdx)^2+2Kmdx+K^2=d^2 ->
// (m^2+1)dx^2+(2Km)dx+(K^2-d^2)=0. We can then solve for dx using the
// quadratic equation with variables a=m^2+1, b=2Km, c=K^2-d^2. We plug
// dx into (3) to find dy. The new points will then be (x+dx,y+dy).
float constant = line_y_intercept + line_slope * point.x() - point.y();
float a = 1.0f + line_slope * line_slope;
float b = 2.0f * line_slope * constant;
float c = constant * constant - projection_distance * projection_distance;
float p1_delta_x = QuadraticEquation(true, a, b, c);
float p1_delta_y =
line_slope * (point.x() + p1_delta_x) + line_y_intercept - point.y();
float p2_delta_x = QuadraticEquation(false, a, b, c);
float p2_delta_y =
line_slope * (point.x() + p2_delta_x) + line_y_intercept - point.y();
*first_projection =
gfx::PointF(point.x() + round(p1_delta_x), point.y() + round(p1_delta_y));
*second_projection =
gfx::PointF(point.x() + round(p2_delta_x), point.y() + round(p2_delta_y));
}
bool IsFirstPointSmallerAngle(const gfx::PointF& start_point,
const gfx::PointF& end_point,
const gfx::PointF& first_point,
const gfx::PointF& second_point) {
gfx::PointF new_origin(
start_point.x() + (end_point.x() - start_point.x()) / 2.0f,
start_point.y() + (end_point.y() - start_point.y()) / 2.0f);
gfx::Vector2dF direction = end_point - start_point;
// Compute the angles of the projections relative to the the new origin and
// direction.
float end_first_projection_angle =
AngleOfPointInNewCoordinates(new_origin, direction, first_point);
float end_second_projection_angle =
AngleOfPointInNewCoordinates(new_origin, direction, second_point);
// We want to always have the smaller angle come first.
return end_first_projection_angle < end_second_projection_angle;
}
} // namespace ash