// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/services/sharing/nearby/platform/input_stream_impl.h"
#include <memory>
#include <string>
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/memory/scoped_refptr.h"
#include "base/run_loop.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/test/bind.h"
#include "base/test/task_environment.h"
#include "base/threading/thread_restrictions.h"
#include "chromeos/ash/services/nearby/public/mojom/nearby_connections_types.mojom.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace nearby {
namespace chrome {
namespace {
// Writes |message| to |receive_stream| in chunks defined by the underlying mojo
// pipe. Must be called on a background thread as this will block until all data
// has been written to the pipe.
void WriteDataBlocking(const std::string& message,
mojo::ScopedDataPipeProducerHandle* receive_stream) {
mojo::ScopedDataPipeProducerHandle& stream = *receive_stream;
base::span<const uint8_t> bytes = base::as_byte_span(message);
while (!bytes.empty()) {
size_t bytes_written = 0;
MojoResult result =
stream->WriteData(bytes, MOJO_WRITE_DATA_FLAG_NONE, bytes_written);
// |result| might be MOJO_RESULT_SHOULD_WAIT in which
// case we need to retry until the reader has emptied
// the mojo pipe enough.
if (result == MOJO_RESULT_OK) {
bytes = bytes.subspan(bytes_written);
}
}
}
} // namespace
class InputStreamImplTest : public ::testing::Test {
public:
InputStreamImplTest()
: task_runner_(
base::ThreadPool::CreateSequencedTaskRunner({base::MayBlock()})) {}
~InputStreamImplTest() override = default;
InputStreamImplTest(const InputStreamImplTest&) = delete;
InputStreamImplTest& operator=(const InputStreamImplTest&) = delete;
void SetUp() override {
mojo::ScopedDataPipeProducerHandle receive_pipe_producer_handle;
mojo::ScopedDataPipeConsumerHandle receive_pipe_consumer_handle;
ASSERT_EQ(
MOJO_RESULT_OK,
mojo::CreateDataPipe(/*options=*/nullptr, receive_pipe_producer_handle,
receive_pipe_consumer_handle));
// InputStreamImpl requires construction on |task_runner_|.
base::RunLoop run_loop;
task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindLambdaForTesting([this, &receive_pipe_consumer_handle] {
input_stream_ = std::make_unique<InputStreamImpl>(
connections::mojom::Medium::kBluetooth, task_runner_,
std::move(receive_pipe_consumer_handle));
}),
run_loop.QuitClosure());
run_loop.Run();
receive_stream_ = std::move(receive_pipe_producer_handle);
}
void TearDown() override {
// InputStreamImpl requires destruction on |task_runner_|.
base::RunLoop run_loop;
task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindLambdaForTesting([this] { input_stream_.reset(); }),
run_loop.QuitClosure());
run_loop.Run();
}
protected:
base::test::TaskEnvironment task_environment_;
scoped_refptr<base::SequencedTaskRunner> task_runner_;
mojo::ScopedDataPipeProducerHandle receive_stream_;
std::unique_ptr<InputStream> input_stream_;
};
TEST_F(InputStreamImplTest, Read) {
std::string message = "ReceivedMessage";
size_t bytes_written = 0;
EXPECT_EQ(MOJO_RESULT_OK, receive_stream_->WriteData(
base::as_byte_span(message),
MOJO_WRITE_DATA_FLAG_NONE, bytes_written));
EXPECT_EQ(message.size(), bytes_written);
ExceptionOr<ByteArray> exception_or_byte_array =
input_stream_->Read(message.size());
ASSERT_TRUE(exception_or_byte_array.ok());
ByteArray& byte_array = exception_or_byte_array.result();
std::string received_string(byte_array);
EXPECT_EQ(message, received_string);
EXPECT_EQ(Exception::kSuccess, input_stream_->Close().value);
}
TEST_F(InputStreamImplTest, MultipleChunks) {
// Expect a total message size of 1MB delivered in chunks because a mojo pipe
// has a maximum buffer size and only accepts a certain amount of data per
// call. The default is 64KB defined in //mojo/core/core.cc
uint32_t message_size = 1024 * 1024;
std::string message(message_size, 'A');
// Post to a thread pool because both InputStream::Read() and
// WriteDataBlocking() below are blocking on each other.
base::RunLoop run_loop;
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE, base::BindOnce(&WriteDataBlocking, message, &receive_stream_),
run_loop.QuitClosure());
// Read from stream and expect to receive 1MB.
ExceptionOr<ByteArray> exception_or_byte_array =
input_stream_->Read(message_size);
ASSERT_TRUE(exception_or_byte_array.ok());
EXPECT_EQ(message, std::string(exception_or_byte_array.result()));
EXPECT_EQ(Exception::kSuccess, input_stream_->Close().value);
// Make sure writer thread is done after we read all the data from it.
run_loop.Run();
}
TEST_F(InputStreamImplTest, CloseBeforeRead) {
EXPECT_EQ(Exception::kSuccess, input_stream_->Close().value);
EXPECT_EQ(Exception::kIo, input_stream_->Read(1u).exception());
}
TEST_F(InputStreamImplTest, CloseWhileReading) {
base::RunLoop run_loop;
// Start waiting for 1 byte to be read from the |receive_stream_|. Note: We
// run on a separate thread because Read() is blocking.
ExceptionOr<ByteArray> read_exception_or_byte_array;
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE,
base::BindLambdaForTesting([this, &read_exception_or_byte_array] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
read_exception_or_byte_array = input_stream_->Read(1u);
}),
run_loop.QuitClosure());
// While Read() is waiting, close the stream. Note: We delay closing the
// stream by 100 ms to ensure that Read() is in fact waiting when Close() is
// posted. Because Read() is blocking, I think this is the best we can do.
// Even if Close() somehow completes before Read(), an IO exception should
// still be thrown.
base::ThreadPool::CreateSequencedTaskRunner({})->PostDelayedTask(
FROM_HERE, base::BindLambdaForTesting([this] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
EXPECT_EQ(Exception::kSuccess, input_stream_->Close().value);
}),
base::Milliseconds(100));
run_loop.Run();
EXPECT_EQ(Exception::kIo, read_exception_or_byte_array.exception());
}
TEST_F(InputStreamImplTest, CloseCalledFromMultipleThreads) {
base::RunLoop run_loop;
const size_t kNumThreads = 2;
// Quit the run loop after Close() returns on all threads.
size_t num_close_calls = 0;
auto quit_callback =
base::BindLambdaForTesting([&num_close_calls, &run_loop] {
++num_close_calls;
if (num_close_calls == kNumThreads)
run_loop.Quit();
});
// Call Close() from different threads simultaneously to ensure the stream is
// shutdown gracefully.
for (size_t thread = 0; thread < kNumThreads; ++thread) {
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE, base::BindLambdaForTesting([this] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
EXPECT_EQ(Exception::kSuccess, input_stream_->Close().value);
}),
quit_callback);
}
run_loop.Run();
}
TEST_F(InputStreamImplTest, ResetHandle) {
// Setup a message to receive that would work if the connection was not reset.
std::string message = "ReceivedMessage";
size_t bytes_written = 0;
EXPECT_EQ(MOJO_RESULT_OK, receive_stream_->WriteData(
base::as_byte_span(message),
MOJO_WRITE_DATA_FLAG_NONE, bytes_written));
EXPECT_EQ(message.size(), bytes_written);
// Reset the pipe on the other side to trigger a peer_reset state.
receive_stream_.reset();
ExceptionOr<ByteArray> exception_or_byte_array =
input_stream_->Read(message.size());
ASSERT_FALSE(exception_or_byte_array.ok());
EXPECT_EQ(Exception::kIo, exception_or_byte_array.exception());
}
} // namespace chrome
} // namespace nearby