// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/services/sharing/nearby/platform/output_stream_impl.h"
#include <memory>
#include <string>
#include <vector>
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/memory/scoped_refptr.h"
#include "base/run_loop.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/test/bind.h"
#include "base/test/task_environment.h"
#include "base/threading/thread_restrictions.h"
#include "chromeos/ash/services/nearby/public/mojom/nearby_connections_types.mojom.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace nearby {
namespace chrome {
namespace {
// Tries to read |expected_message| from |send_stream| in chunks defined by the
// underlying mojo pipe. This will read exactly |expected_message.size()| bytes
// from the pipe and compare the bytes to |expected_message|. Must be called on
// a background thread as this will block until all data has been read from the
// stream.
void ReadDataBlocking(const std::string& expected_message,
mojo::ScopedDataPipeConsumerHandle* send_stream) {
mojo::ScopedDataPipeConsumerHandle& stream = *send_stream;
std::string message(expected_message.size(), '\0');
base::span<uint8_t> buffer = base::as_writable_byte_span(message);
while (!buffer.empty()) {
size_t bytes_read = 0;
MojoResult result =
stream->ReadData(MOJO_READ_DATA_FLAG_NONE, buffer, bytes_read);
// |result| might be MOJO_RESULT_SHOULD_WAIT in which
// case we need to retry until the writer has filled
// the mojo pipe again.
if (result == MOJO_RESULT_OK) {
buffer = buffer.subspan(bytes_read);
}
}
EXPECT_EQ(expected_message, message.data());
}
} // namespace
class OutputStreamImplTest : public ::testing::Test {
public:
OutputStreamImplTest()
: task_runner_(
base::ThreadPool::CreateSequencedTaskRunner({base::MayBlock()})) {}
~OutputStreamImplTest() override = default;
OutputStreamImplTest(const OutputStreamImplTest&) = delete;
OutputStreamImplTest& operator=(const OutputStreamImplTest&) = delete;
void SetUp() override {
mojo::ScopedDataPipeProducerHandle send_pipe_producer_handle;
mojo::ScopedDataPipeConsumerHandle send_pipe_consumer_handle;
ASSERT_EQ(MOJO_RESULT_OK, mojo::CreateDataPipe(/*options=*/nullptr,
send_pipe_producer_handle,
send_pipe_consumer_handle));
// OutputStreamImpl requires construction on |task_runner_|.
base::RunLoop run_loop;
task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindLambdaForTesting([this, &send_pipe_producer_handle] {
output_stream_ = std::make_unique<OutputStreamImpl>(
connections::mojom::Medium::kBluetooth, task_runner_,
std::move(send_pipe_producer_handle));
}),
run_loop.QuitClosure());
run_loop.Run();
send_stream_ = std::move(send_pipe_consumer_handle);
}
void TearDown() override {
// OutputStreamImpl requires destruction on |task_runner_|.
base::RunLoop run_loop;
task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindLambdaForTesting([this] { output_stream_.reset(); }),
run_loop.QuitClosure());
run_loop.Run();
}
protected:
base::test::TaskEnvironment task_environment_;
scoped_refptr<base::SequencedTaskRunner> task_runner_;
mojo::ScopedDataPipeConsumerHandle send_stream_;
std::unique_ptr<OutputStream> output_stream_;
};
TEST_F(OutputStreamImplTest, Write) {
std::string message = "SentMessage";
ByteArray byte_array(message);
EXPECT_EQ(Exception::kSuccess, output_stream_->Write(byte_array).value);
size_t bytes_read = 0;
std::vector<char> buffer(1024);
EXPECT_EQ(
MOJO_RESULT_OK,
send_stream_->ReadData(MOJO_READ_DATA_FLAG_NONE,
base::as_writable_byte_span(buffer), bytes_read));
std::string_view sent_string =
base::as_string_view(buffer).substr(0, bytes_read);
EXPECT_EQ(message, sent_string);
EXPECT_EQ(Exception::kSuccess, output_stream_->Flush().value);
EXPECT_EQ(Exception::kSuccess, output_stream_->Close().value);
}
TEST_F(OutputStreamImplTest, MultipleChunks) {
// Expect a total message size of 1MB delivered in chunks because a mojo pipe
// has a maximum buffer size and only accepts a certain amount of data per
// call. The default is 64KB defined in //mojo/core/core.cc
uint32_t message_size = 1024 * 1024;
std::string message(message_size, 'A');
// Post to a thread pool because both OutputStream::Write() and
// ReadDataBlocking() below are blocking on each other.
base::RunLoop run_loop;
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE, base::BindOnce(&ReadDataBlocking, message, &send_stream_),
run_loop.QuitClosure());
// Write to stream and expect a successful transfer.
EXPECT_EQ(Exception::kSuccess,
output_stream_->Write(ByteArray(message)).value);
EXPECT_EQ(Exception::kSuccess, output_stream_->Flush().value);
EXPECT_EQ(Exception::kSuccess, output_stream_->Close().value);
// Make sure reader thread is done after we wrote all the data to it.
run_loop.Run();
}
TEST_F(OutputStreamImplTest, CloseBeforeWrite) {
EXPECT_EQ(Exception::kSuccess, output_stream_->Close().value);
EXPECT_EQ(Exception::kIo, output_stream_->Write(ByteArray("message")).value);
}
TEST_F(OutputStreamImplTest, CloseWhileWriting) {
base::RunLoop run_loop;
// Start waiting for the bytes to be written from the |send_stream_|. Note: We
// run on a separate thread because Write() is blocking.
Exception write_exception;
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE, base::BindLambdaForTesting([this, &write_exception] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
// Expect a total message size of 1MB delivered in chunks because a mojo
// pipe has a maximum buffer size and only accepts a certain amount of
// data per call. The default is 64KB defined in //mojo/core/core.cc. We
// want a large message so the Write() will be forced to wait.
uint32_t message_size = 1024 * 1024;
std::string message(message_size, 'A');
write_exception = output_stream_->Write(ByteArray(message));
}),
run_loop.QuitClosure());
// While Write() is waiting, close the stream. Note: We delay closing the
// stream by 100 ms to ensure that Write() is in fact waiting when Close() is
// posted. Because Write() is blocking, I think this is the best we can do.
// Even if Close() somehow completes before Write(), an IO exception should
// still be thrown.
base::ThreadPool::CreateSequencedTaskRunner({})->PostDelayedTask(
FROM_HERE, base::BindLambdaForTesting([this] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
EXPECT_EQ(Exception::kSuccess, output_stream_->Close().value);
}),
base::Milliseconds(100));
run_loop.Run();
EXPECT_EQ(Exception::kIo, write_exception.value);
}
TEST_F(OutputStreamImplTest, CloseCalledFromMultipleThreads) {
base::RunLoop run_loop;
const size_t kNumThreads = 2;
// Quit the run loop after Close() returns on all threads.
size_t num_close_calls = 0;
auto quit_callback =
base::BindLambdaForTesting([&num_close_calls, &run_loop] {
++num_close_calls;
if (num_close_calls == kNumThreads)
run_loop.Quit();
});
// Call Close() from different threads simultaneously to ensure the stream is
// shutdown gracefully.
for (size_t thread = 0; thread < kNumThreads; ++thread) {
base::ThreadPool::CreateSequencedTaskRunner({})->PostTaskAndReply(
FROM_HERE, base::BindLambdaForTesting([this] {
base::ScopedAllowBaseSyncPrimitivesForTesting allow;
EXPECT_EQ(Exception::kSuccess, output_stream_->Close().value);
}),
quit_callback);
}
run_loop.Run();
}
TEST_F(OutputStreamImplTest, ResetHandle) {
// Reset the pipe on the other side to trigger a peer_reset state.
send_stream_.reset();
std::string message = "SentMessage";
ByteArray byte_array(message);
EXPECT_EQ(Exception::kIo, output_stream_->Write(byte_array).value);
}
} // namespace chrome
} // namespace nearby