#ifndef Py_REFCOUNT_H #define Py_REFCOUNT_H #ifdef __cplusplus extern "C" { #endif /* Immortalization: The following indicates the immortalization strategy depending on the amount of available bits in the reference count field. All strategies are backwards compatible but the specific reference count value or immortalization check might change depending on the specializations for the underlying system. Proper deallocation of immortal instances requires distinguishing between statically allocated immortal instances vs those promoted by the runtime to be immortal. The latter should be the only instances that require cleanup during runtime finalization. */ #if SIZEOF_VOID_P > 4 /* In 64+ bit systems, an object will be marked as immortal by setting all of the lower 32 bits of the reference count field, which is equal to: 0xFFFFFFFF Using the lower 32 bits makes the value backwards compatible by allowing C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely increase and decrease the objects reference count. The object would lose its immortality, but the execution would still be correct. Reference count increases will use saturated arithmetic, taking advantage of having all the lower 32 bits set, which will avoid the reference count to go beyond the refcount limit. Immortality checks for reference count decreases will be done by checking the bit sign flag in the lower 32 bits. */ #define _Py_IMMORTAL_REFCNT … #else /* In 32 bit systems, an object will be marked as immortal by setting all of the lower 30 bits of the reference count field, which is equal to: 0x3FFFFFFF Using the lower 30 bits makes the value backwards compatible by allowing C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely increase and decrease the objects reference count. The object would lose its immortality, but the execution would still be correct. Reference count increases and decreases will first go through an immortality check by comparing the reference count field to the immortality reference count. */ #define _Py_IMMORTAL_REFCNT … #endif // Py_GIL_DISABLED builds indicate immortal objects using `ob_ref_local`, which is // always 32-bits. #ifdef Py_GIL_DISABLED #define _Py_IMMORTAL_REFCNT_LOCAL … #endif #ifdef Py_GIL_DISABLED // The shared reference count uses the two least-significant bits to store // flags. The remaining bits are used to store the reference count. #define _Py_REF_SHARED_SHIFT … #define _Py_REF_SHARED_FLAG_MASK … // The shared flags are initialized to zero. #define _Py_REF_SHARED_INIT … #define _Py_REF_MAYBE_WEAKREF … #define _Py_REF_QUEUED … #define _Py_REF_MERGED … // Create a shared field from a refcnt and desired flags #define _Py_REF_SHARED … #endif // Py_GIL_DISABLED static inline Py_ssize_t Py_REFCNT(PyObject *ob) { … } #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_REFCNT(ob) … #endif static inline Py_ALWAYS_INLINE int _Py_IsImmortal(PyObject *op) { … } #define _Py_IsImmortal(op) … // Py_SET_REFCNT() implementation for stable ABI PyAPI_FUNC(void) _Py_SetRefcnt(PyObject *ob, Py_ssize_t refcnt); static inline void Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) { … } #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_SET_REFCNT(ob, refcnt) … #endif /* The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement reference counts. Py_DECREF calls the object's deallocator function when the refcount falls to 0; for objects that don't contain references to other objects or heap memory this can be the standard function free(). Both macros can be used wherever a void expression is allowed. The argument must not be a NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. The macro _Py_NewReference(op) initialize reference counts to 1, and in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional bookkeeping appropriate to the special build. We assume that the reference count field can never overflow; this can be proven when the size of the field is the same as the pointer size, so we ignore the possibility. Provided a C int is at least 32 bits (which is implicitly assumed in many parts of this code), that's enough for about 2**31 references to an object. XXX The following became out of date in Python 2.2, but I'm not sure XXX what the full truth is now. Certainly, heap-allocated type objects XXX can and should be deallocated. Type objects should never be deallocated; the type pointer in an object is not considered to be a reference to the type object, to save complications in the deallocation function. (This is actually a decision that's up to the implementer of each new type so if you want, you can count such references to the type object.) */ #if defined(Py_REF_DEBUG) && !defined(Py_LIMITED_API) PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno, PyObject *op); PyAPI_FUNC(void) _Py_INCREF_IncRefTotal(void); PyAPI_FUNC(void) _Py_DECREF_DecRefTotal(void); #endif // Py_REF_DEBUG && !Py_LIMITED_API PyAPI_FUNC(void) _Py_Dealloc(PyObject *); /* These are provided as conveniences to Python runtime embedders, so that they can have object code that is not dependent on Python compilation flags. */ PyAPI_FUNC(void) Py_IncRef(PyObject *); PyAPI_FUNC(void) Py_DecRef(PyObject *); // Similar to Py_IncRef() and Py_DecRef() but the argument must be non-NULL. // Private functions used by Py_INCREF() and Py_DECREF(). PyAPI_FUNC(void) _Py_IncRef(PyObject *); PyAPI_FUNC(void) _Py_DecRef(PyObject *); static inline Py_ALWAYS_INLINE void Py_INCREF(PyObject *op) { … } #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_INCREF(op) … #endif #if !defined(Py_LIMITED_API) && defined(Py_GIL_DISABLED) // Implements Py_DECREF on objects not owned by the current thread. PyAPI_FUNC(void) _Py_DecRefShared(PyObject *); PyAPI_FUNC(void) _Py_DecRefSharedDebug(PyObject *, const char *, int); // Called from Py_DECREF by the owning thread when the local refcount reaches // zero. The call will deallocate the object if the shared refcount is also // zero. Otherwise, the thread gives up ownership and merges the reference // count fields. PyAPI_FUNC(void) _Py_MergeZeroLocalRefcount(PyObject *); #endif #if defined(Py_LIMITED_API) && (Py_LIMITED_API+0 >= 0x030c0000 || defined(Py_REF_DEBUG)) // Stable ABI implements Py_DECREF() as a function call on limited C API // version 3.12 and newer, and on Python built in debug mode. _Py_DecRef() was // added to Python 3.10.0a7, use Py_DecRef() on older Python versions. // Py_DecRef() accepts NULL whereas _Py_IncRef() doesn't. static inline void Py_DECREF(PyObject *op) { # if Py_LIMITED_API+0 >= 0x030a00A7 _Py_DecRef(op); # else Py_DecRef(op); # endif } #define Py_DECREF … #elif defined(Py_GIL_DISABLED) && defined(Py_REF_DEBUG) static inline void Py_DECREF(const char *filename, int lineno, PyObject *op) { uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local); if (local == _Py_IMMORTAL_REFCNT_LOCAL) { return; } _Py_DECREF_STAT_INC(); _Py_DECREF_DecRefTotal(); if (_Py_IsOwnedByCurrentThread(op)) { if (local == 0) { _Py_NegativeRefcount(filename, lineno, op); } local--; _Py_atomic_store_uint32_relaxed(&op->ob_ref_local, local); if (local == 0) { _Py_MergeZeroLocalRefcount(op); } } else { _Py_DecRefSharedDebug(op, filename, lineno); } } #define Py_DECREF … #elif defined(Py_GIL_DISABLED) static inline void Py_DECREF(PyObject *op) { uint32_t local = _Py_atomic_load_uint32_relaxed(&op->ob_ref_local); if (local == _Py_IMMORTAL_REFCNT_LOCAL) { return; } _Py_DECREF_STAT_INC(); if (_Py_IsOwnedByCurrentThread(op)) { local--; _Py_atomic_store_uint32_relaxed(&op->ob_ref_local, local); if (local == 0) { _Py_MergeZeroLocalRefcount(op); } } else { _Py_DecRefShared(op); } } #define Py_DECREF … #elif defined(Py_REF_DEBUG) static inline void Py_DECREF(const char *filename, int lineno, PyObject *op) { if (op->ob_refcnt <= 0) { _Py_NegativeRefcount(filename, lineno, op); } if (_Py_IsImmortal(op)) { return; } _Py_DECREF_STAT_INC(); _Py_DECREF_DecRefTotal(); if (--op->ob_refcnt == 0) { _Py_Dealloc(op); } } #define Py_DECREF … #else static inline Py_ALWAYS_INLINE void Py_DECREF(PyObject *op) { … } #define Py_DECREF(op) … #endif /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear * and tp_dealloc implementations. * * Note that "the obvious" code can be deadly: * * Py_XDECREF(op); * op = NULL; * * Typically, `op` is something like self->containee, and `self` is done * using its `containee` member. In the code sequence above, suppose * `containee` is non-NULL with a refcount of 1. Its refcount falls to * 0 on the first line, which can trigger an arbitrary amount of code, * possibly including finalizers (like __del__ methods or weakref callbacks) * coded in Python, which in turn can release the GIL and allow other threads * to run, etc. Such code may even invoke methods of `self` again, or cause * cyclic gc to trigger, but-- oops! --self->containee still points to the * object being torn down, and it may be in an insane state while being torn * down. This has in fact been a rich historic source of miserable (rare & * hard-to-diagnose) segfaulting (and other) bugs. * * The safe way is: * * Py_CLEAR(op); * * That arranges to set `op` to NULL _before_ decref'ing, so that any code * triggered as a side-effect of `op` getting torn down no longer believes * `op` points to a valid object. * * There are cases where it's safe to use the naive code, but they're brittle. * For example, if `op` points to a Python integer, you know that destroying * one of those can't cause problems -- but in part that relies on that * Python integers aren't currently weakly referencable. Best practice is * to use Py_CLEAR() even if you can't think of a reason for why you need to. * * gh-98724: Use a temporary variable to only evaluate the macro argument once, * to avoid the duplication of side effects if the argument has side effects. * * gh-99701: If the PyObject* type is used with casting arguments to PyObject*, * the code can be miscompiled with strict aliasing because of type punning. * With strict aliasing, a compiler considers that two pointers of different * types cannot read or write the same memory which enables optimization * opportunities. * * If available, use _Py_TYPEOF() to use the 'op' type for temporary variables, * and so avoid type punning. Otherwise, use memcpy() which causes type erasure * and so prevents the compiler to reuse an old cached 'op' value after * Py_CLEAR(). */ #ifdef _Py_TYPEOF #define Py_CLEAR(op) … #else #define Py_CLEAR … #endif /* Function to use in case the object pointer can be NULL: */ static inline void Py_XINCREF(PyObject *op) { … } #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_XINCREF(op) … #endif static inline void Py_XDECREF(PyObject *op) { … } #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_XDECREF(op) … #endif // Create a new strong reference to an object: // increment the reference count of the object and return the object. PyAPI_FUNC(PyObject*) Py_NewRef(PyObject *obj); // Similar to Py_NewRef(), but the object can be NULL. PyAPI_FUNC(PyObject*) Py_XNewRef(PyObject *obj); static inline PyObject* _Py_NewRef(PyObject *obj) { … } static inline PyObject* _Py_XNewRef(PyObject *obj) { … } // Py_NewRef() and Py_XNewRef() are exported as functions for the stable ABI. // Names overridden with macros by static inline functions for best // performances. #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 #define Py_NewRef(obj) … #define Py_XNewRef(obj) … #else #define Py_NewRef … #define Py_XNewRef … #endif #ifdef __cplusplus } #endif #endif // !Py_REFCOUNT_H