/* * Copyright (c) 2008-2020 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include <assert.h> #include "constants.h" #include "crt.h" #include "numbertheory.h" #include "typearith.h" #include "umodarith.h" /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */ /* Multiply P1P2 by v, store result in w. */ static inline void _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v) { … } /* Add 3 words from v to w. The result is known to fit in w. */ static inline void _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3]) { … } /* Divide 3 words in u by v, store result in w, return remainder. */ static inline mpd_uint_t _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v) { … } /* * Chinese Remainder Theorem: * Algorithm from Joerg Arndt, "Matters Computational", * Chapter 37.4.1 [http://www.jjj.de/fxt/] * * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7. */ /* * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each * triple of members of the arrays, find the unique z modulo p1*p2*p3, with * zmax = p1*p2*p3 - 1. * * In each iteration of the loop, split z into result[i] = z % MPD_RADIX * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the * maximum carry. * * Limits for the 32-bit build: * * N = 2**96 * cmax = 7711435591312380274 * * Limits for the 64 bit build: * * N = 2**192 * cmax = 627710135393475385904124401220046371710 * * The following statements hold for both versions: * * 1) cmax + zmax < N, so the addition does not overflow. * * 2) (cmax + zmax) / MPD_RADIX == cmax. * * 3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax. */ void crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize) { … }