"""Implements InterpreterPoolExecutor."""
import contextlib
import pickle
import textwrap
from . import thread as _thread
import _interpreters
import _interpqueues
class ExecutionFailed(_interpreters.InterpreterError):
"""An unhandled exception happened during execution."""
def __init__(self, excinfo):
msg = excinfo.formatted
if not msg:
if excinfo.type and excinfo.msg:
msg = f'{excinfo.type.__name__}: {excinfo.msg}'
else:
msg = excinfo.type.__name__ or excinfo.msg
super().__init__(msg)
self.excinfo = excinfo
def __str__(self):
try:
formatted = self.excinfo.errdisplay
except Exception:
return super().__str__()
else:
return textwrap.dedent(f"""
{super().__str__()}
Uncaught in the interpreter:
{formatted}
""".strip())
UNBOUND = 2 # error; this should not happen.
class WorkerContext(_thread.WorkerContext):
@classmethod
def prepare(cls, initializer, initargs, shared):
def resolve_task(fn, args, kwargs):
if isinstance(fn, str):
# XXX Circle back to this later.
raise TypeError('scripts not supported')
if args or kwargs:
raise ValueError(f'a script does not take args or kwargs, got {args!r} and {kwargs!r}')
data = textwrap.dedent(fn)
kind = 'script'
# Make sure the script compiles.
# Ideally we wouldn't throw away the resulting code
# object. However, there isn't much to be done until
# code objects are shareable and/or we do a better job
# of supporting code objects in _interpreters.exec().
compile(data, '<string>', 'exec')
else:
# Functions defined in the __main__ module can't be pickled,
# so they can't be used here. In the future, we could possibly
# borrow from multiprocessing to work around this.
data = pickle.dumps((fn, args, kwargs))
kind = 'function'
return (data, kind)
if initializer is not None:
try:
initdata = resolve_task(initializer, initargs, {})
except ValueError:
if isinstance(initializer, str) and initargs:
raise ValueError(f'an initializer script does not take args, got {initargs!r}')
raise # re-raise
else:
initdata = None
def create_context():
return cls(initdata, shared)
return create_context, resolve_task
@classmethod
@contextlib.contextmanager
def _capture_exc(cls, resultsid):
try:
yield
except BaseException as exc:
# Send the captured exception out on the results queue,
# but still leave it unhandled for the interpreter to handle.
err = pickle.dumps(exc)
_interpqueues.put(resultsid, (None, err), 1, UNBOUND)
raise # re-raise
@classmethod
def _send_script_result(cls, resultsid):
_interpqueues.put(resultsid, (None, None), 0, UNBOUND)
@classmethod
def _call(cls, func, args, kwargs, resultsid):
with cls._capture_exc(resultsid):
res = func(*args or (), **kwargs or {})
# Send the result back.
try:
_interpqueues.put(resultsid, (res, None), 0, UNBOUND)
except _interpreters.NotShareableError:
res = pickle.dumps(res)
_interpqueues.put(resultsid, (res, None), 1, UNBOUND)
@classmethod
def _call_pickled(cls, pickled, resultsid):
with cls._capture_exc(resultsid):
fn, args, kwargs = pickle.loads(pickled)
cls._call(fn, args, kwargs, resultsid)
def __init__(self, initdata, shared=None):
self.initdata = initdata
self.shared = dict(shared) if shared else None
self.interpid = None
self.resultsid = None
def __del__(self):
if self.interpid is not None:
self.finalize()
def _exec(self, script):
assert self.interpid is not None
excinfo = _interpreters.exec(self.interpid, script, restrict=True)
if excinfo is not None:
raise ExecutionFailed(excinfo)
def initialize(self):
assert self.interpid is None, self.interpid
self.interpid = _interpreters.create(reqrefs=True)
try:
_interpreters.incref(self.interpid)
maxsize = 0
fmt = 0
self.resultsid = _interpqueues.create(maxsize, fmt, UNBOUND)
self._exec(f'from {__name__} import WorkerContext')
if self.shared:
_interpreters.set___main___attrs(
self.interpid, self.shared, restrict=True)
if self.initdata:
self.run(self.initdata)
except BaseException:
self.finalize()
raise # re-raise
def finalize(self):
interpid = self.interpid
resultsid = self.resultsid
self.resultsid = None
self.interpid = None
if resultsid is not None:
try:
_interpqueues.destroy(resultsid)
except _interpqueues.QueueNotFoundError:
pass
if interpid is not None:
try:
_interpreters.decref(interpid)
except _interpreters.InterpreterNotFoundError:
pass
def run(self, task):
data, kind = task
if kind == 'script':
raise NotImplementedError('script kind disabled')
script = f"""
with WorkerContext._capture_exc({self.resultsid}):
{textwrap.indent(data, ' ')}
WorkerContext._send_script_result({self.resultsid})"""
elif kind == 'function':
script = f'WorkerContext._call_pickled({data!r}, {self.resultsid})'
else:
raise NotImplementedError(kind)
try:
self._exec(script)
except ExecutionFailed as exc:
exc_wrapper = exc
else:
exc_wrapper = None
# Return the result, or raise the exception.
while True:
try:
obj = _interpqueues.get(self.resultsid)
except _interpqueues.QueueNotFoundError:
raise # re-raise
except _interpqueues.QueueError:
continue
except ModuleNotFoundError:
# interpreters.queues doesn't exist, which means
# QueueEmpty doesn't. Act as though it does.
continue
else:
break
(res, excdata), pickled, unboundop = obj
assert unboundop is None, unboundop
if excdata is not None:
assert res is None, res
assert pickled
assert exc_wrapper is not None
exc = pickle.loads(excdata)
raise exc from exc_wrapper
return pickle.loads(res) if pickled else res
class BrokenInterpreterPool(_thread.BrokenThreadPool):
"""
Raised when a worker thread in an InterpreterPoolExecutor failed initializing.
"""
class InterpreterPoolExecutor(_thread.ThreadPoolExecutor):
BROKEN = BrokenInterpreterPool
@classmethod
def prepare_context(cls, initializer, initargs, shared):
return WorkerContext.prepare(initializer, initargs, shared)
def __init__(self, max_workers=None, thread_name_prefix='',
initializer=None, initargs=(), shared=None):
"""Initializes a new InterpreterPoolExecutor instance.
Args:
max_workers: The maximum number of interpreters that can be used to
execute the given calls.
thread_name_prefix: An optional name prefix to give our threads.
initializer: A callable or script used to initialize
each worker interpreter.
initargs: A tuple of arguments to pass to the initializer.
shared: A mapping of shareabled objects to be inserted into
each worker interpreter.
"""
super().__init__(max_workers, thread_name_prefix,
initializer, initargs, shared=shared)