:mod:`!fractions` --- Rational numbers
======================================
.. module:: fractions
:synopsis: Rational numbers.
.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
**Source code:** :source:`Lib/fractions.py`
--------------
The :mod:`fractions` module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from
another rational number, or from a string.
.. index:: single: as_integer_ratio()
.. class:: Fraction(numerator=0, denominator=1)
Fraction(number)
Fraction(string)
The first version requires that *numerator* and *denominator* are instances
of :class:`numbers.Rational` and returns a new :class:`Fraction` instance
with value ``numerator/denominator``. If *denominator* is ``0``, it
raises a :exc:`ZeroDivisionError`.
The second version requires that *number* is an instance of
:class:`numbers.Rational` or has the :meth:`!as_integer_ratio` method
(this includes :class:`float` and :class:`decimal.Decimal`).
It returns a :class:`Fraction` instance with exactly the same value.
Assumed, that the :meth:`!as_integer_ratio` method returns a pair
of coprime integers and last one is positive.
Note that due to the
usual issues with binary point (see :ref:`tut-fp-issues`), the
argument to ``Fraction(1.1)`` is not exactly equal to 11/10, and so
``Fraction(1.1)`` does *not* return ``Fraction(11, 10)`` as one might expect.
(But see the documentation for the :meth:`limit_denominator` method below.)
The last version of the constructor expects a string.
The usual form for this instance is::
[sign] numerator ['/' denominator]
where the optional ``sign`` may be either '+' or '-' and
``numerator`` and ``denominator`` (if present) are strings of
decimal digits (underscores may be used to delimit digits as with
integral literals in code). In addition, any string that represents a finite
value and is accepted by the :class:`float` constructor is also
accepted by the :class:`Fraction` constructor. In either form the
input string may also have leading and/or trailing whitespace.
Here are some examples::
>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
>>> Fraction('7e-6')
Fraction(7, 1000000)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1'))
Fraction(11, 10)
The :class:`Fraction` class inherits from the abstract base class
:class:`numbers.Rational`, and implements all of the methods and
operations from that class. :class:`Fraction` instances are :term:`hashable`,
and should be treated as immutable. In addition,
:class:`Fraction` has the following properties and methods:
.. versionchanged:: 3.2
The :class:`Fraction` constructor now accepts :class:`float` and
:class:`decimal.Decimal` instances.
.. versionchanged:: 3.9
The :func:`math.gcd` function is now used to normalize the *numerator*
and *denominator*. :func:`math.gcd` always returns an :class:`int` type.
Previously, the GCD type depended on *numerator* and *denominator*.
.. versionchanged:: 3.11
Underscores are now permitted when creating a :class:`Fraction` instance
from a string, following :PEP:`515` rules.
.. versionchanged:: 3.11
:class:`Fraction` implements ``__int__`` now to satisfy
``typing.SupportsInt`` instance checks.
.. versionchanged:: 3.12
Space is allowed around the slash for string inputs: ``Fraction('2 / 3')``.
.. versionchanged:: 3.12
:class:`Fraction` instances now support float-style formatting, with
presentation types ``"e"``, ``"E"``, ``"f"``, ``"F"``, ``"g"``, ``"G"``
and ``"%""``.
.. versionchanged:: 3.13
Formatting of :class:`Fraction` instances without a presentation type
now supports fill, alignment, sign handling, minimum width and grouping.
.. versionchanged:: 3.14
The :class:`Fraction` constructor now accepts any objects with the
:meth:`!as_integer_ratio` method.
.. attribute:: numerator
Numerator of the Fraction in lowest term.
.. attribute:: denominator
Denominator of the Fraction in lowest term.
.. method:: as_integer_ratio()
Return a tuple of two integers, whose ratio is equal
to the original Fraction. The ratio is in lowest terms
and has a positive denominator.
.. versionadded:: 3.8
.. method:: is_integer()
Return ``True`` if the Fraction is an integer.
.. versionadded:: 3.12
.. classmethod:: from_float(flt)
Alternative constructor which only accepts instances of
:class:`float` or :class:`numbers.Integral`. Beware that
``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``.
.. note::
From Python 3.2 onwards, you can also construct a
:class:`Fraction` instance directly from a :class:`float`.
.. classmethod:: from_decimal(dec)
Alternative constructor which only accepts instances of
:class:`decimal.Decimal` or :class:`numbers.Integral`.
.. note::
From Python 3.2 onwards, you can also construct a
:class:`Fraction` instance directly from a :class:`decimal.Decimal`
instance.
.. classmethod:: from_number(number)
Alternative constructor which only accepts instances of
:class:`numbers.Integral`, :class:`numbers.Rational`,
:class:`float` or :class:`decimal.Decimal`, and objects with
the :meth:`!as_integer_ratio` method, but not strings.
.. versionadded:: 3.14
.. method:: limit_denominator(max_denominator=1000000)
Finds and returns the closest :class:`Fraction` to ``self`` that has
denominator at most max_denominator. This method is useful for finding
rational approximations to a given floating-point number:
>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
or for recovering a rational number that's represented as a float:
>>> from math import pi, cos
>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator()
Fraction(1, 2)
>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)
.. method:: __floor__()
Returns the greatest :class:`int` ``<= self``. This method can
also be accessed through the :func:`math.floor` function:
>>> from math import floor
>>> floor(Fraction(355, 113))
3
.. method:: __ceil__()
Returns the least :class:`int` ``>= self``. This method can
also be accessed through the :func:`math.ceil` function.
.. method:: __round__()
__round__(ndigits)
The first version returns the nearest :class:`int` to ``self``,
rounding half to even. The second version rounds ``self`` to the
nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if
``ndigits`` is negative), again rounding half toward even. This
method can also be accessed through the :func:`round` function.
.. method:: __format__(format_spec, /)
Provides support for formatting of :class:`Fraction` instances via the
:meth:`str.format` method, the :func:`format` built-in function, or
:ref:`Formatted string literals <f-strings>`.
If the ``format_spec`` format specification string does not end with one
of the presentation types ``'e'``, ``'E'``, ``'f'``, ``'F'``, ``'g'``,
``'G'`` or ``'%'`` then formatting follows the general rules for fill,
alignment, sign handling, minimum width, and grouping as described in the
:ref:`format specification mini-language <formatspec>`. The "alternate
form" flag ``'#'`` is supported: if present, it forces the output string
to always include an explicit denominator, even when the value being
formatted is an exact integer. The zero-fill flag ``'0'`` is not
supported.
If the ``format_spec`` format specification string ends with one of
the presentation types ``'e'``, ``'E'``, ``'f'``, ``'F'``, ``'g'``,
``'G'`` or ``'%'`` then formatting follows the rules outlined for the
:class:`float` type in the :ref:`formatspec` section.
Here are some examples::
>>> from fractions import Fraction
>>> format(Fraction(103993, 33102), '_')
'103_993/33_102'
>>> format(Fraction(1, 7), '.^+10')
'...+1/7...'
>>> format(Fraction(3, 1), '')
'3'
>>> format(Fraction(3, 1), '#')
'3/1'
>>> format(Fraction(1, 7), '.40g')
'0.1428571428571428571428571428571428571429'
>>> format(Fraction('1234567.855'), '_.2f')
'1_234_567.86'
>>> f"{Fraction(355, 113):*>20.6e}"
'********3.141593e+00'
>>> old_price, new_price = 499, 672
>>> "{:.2%} price increase".format(Fraction(new_price, old_price) - 1)
'34.67% price increase'
.. seealso::
Module :mod:`numbers`
The abstract base classes making up the numeric tower.