(* Copyright (c) 2011-2020 Stefan Krah. All rights reserved. *)
========================================================================
Calculate (a * b) % p using the 80-bit x87 FPU
========================================================================
A description of the algorithm can be found in the apfloat manual by
Tommila [1].
The proof follows an argument made by Granlund/Montgomery in [2].
Definitions and assumptions:
----------------------------
The 80-bit extended precision format uses 64 bits for the significand:
(1) F = 64
The modulus is prime and less than 2**31:
(2) 2 <= p < 2**31
The factors are less than p:
(3) 0 <= a < p
(4) 0 <= b < p
The product a * b is less than 2**62 and is thus exact in 64 bits:
(5) n = a * b
The product can be represented in terms of quotient and remainder:
(6) n = q * p + r
Using (3), (4) and the fact that p is prime, the remainder is always
greater than zero:
(7) 0 <= q < p /\ 1 <= r < p
Strategy:
---------
Precalculate the 80-bit long double inverse of p, with a maximum
relative error of 2**(1-F):
(8) pinv = (long double)1.0 / p
Calculate an estimate for q = floor(n/p). The multiplication has another
maximum relative error of 2**(1-F):
(9) qest = n * pinv
If we can show that q < qest < q+1, then trunc(qest) = q. It is then
easy to recover the remainder r. The complete algorithm is:
a) Set the control word to 64-bit precision and truncation mode.
b) n = a * b # Calculate exact product.
c) qest = n * pinv # Calculate estimate for the quotient.
d) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient.
f) r = n - q * p # Calculate remainder.
Proof for q < qest < q+1:
-------------------------
Using the cumulative error, the error bounds for qest are:
n n * (1 + 2**(1-F))**2
(9) --------------------- <= qest <= ---------------------
p * (1 + 2**(1-F))**2 p
Lemma 1:
--------
n q * p + r
(10) q < --------------------- = ---------------------
p * (1 + 2**(1-F))**2 p * (1 + 2**(1-F))**2
Proof:
~~~~~~
(I) q * p * (1 + 2**(1-F))**2 < q * p + r
(II) q * p * 2**(2-F) + q * p * 2**(2-2*F) < r
Using (1) and (7), it is sufficient to show that:
(III) q * p * 2**(-62) + q * p * 2**(-126) < 1 <= r
(III) can easily be verified by substituting the largest possible
values p = 2**31-1 and q = 2**31-2.
The critical cases occur when r = 1, n = m * p + 1. These cases
can be exhaustively verified with a test program.
Lemma 2:
--------
n * (1 + 2**(1-F))**2 (q * p + r) * (1 + 2**(1-F))**2
(11) --------------------- = ------------------------------- < q + 1
p p
Proof:
~~~~~~
(I) (q * p + r) + (q * p + r) * 2**(2-F) + (q * p + r) * 2**(2-2*F) < q * p + p
(II) (q * p + r) * 2**(2-F) + (q * p + r) * 2**(2-2*F) < p - r
Using (1) and (7), it is sufficient to show that:
(III) (q * p + r) * 2**(-62) + (q * p + r) * 2**(-126) < 1 <= p - r
(III) can easily be verified by substituting the largest possible
values p = 2**31-1, q = 2**31-2 and r = 2**31-2.
The critical cases occur when r = (p - 1), n = m * p - 1. These cases
can be exhaustively verified with a test program.
[1] http://www.apfloat.org/apfloat/2.40/apfloat.pdf
[2] http://gmplib.org/~tege/divcnst-pldi94.pdf
[Section 7: "Use of floating point"]
(* Coq proof for (10) and (11) *)
Require Import ZArith.
Require Import QArith.
Require Import Qpower.
Require Import Qabs.
Require Import Psatz.
Open Scope Q_scope.
Ltac qreduce T :=
rewrite <- (Qred_correct (T)); simpl (Qred (T)).
Theorem Qlt_move_right :
forall x y z:Q, x + z < y <-> x < y - z.
Proof.
intros.
split.
intros.
psatzl Q.
intros.
psatzl Q.
Qed.
Theorem Qlt_mult_by_z :
forall x y z:Q, 0 < z -> (x < y <-> x * z < y * z).
Proof.
intros.
split.
intros.
apply Qmult_lt_compat_r. trivial. trivial.
intros.
rewrite <- (Qdiv_mult_l x z). rewrite <- (Qdiv_mult_l y z).
apply Qmult_lt_compat_r.
apply Qlt_shift_inv_l.
trivial. psatzl Q. trivial. psatzl Q. psatzl Q.
Qed.
Theorem Qle_mult_quad :
forall (a b c d:Q),
0 <= a -> a <= c ->
0 <= b -> b <= d ->
a * b <= c * d.
intros.
psatz Q.
Qed.
Theorem q_lt_qest:
forall (p q r:Q),
(0 < p) -> (p <= (2#1)^31 - 1) ->
(0 <= q) -> (q <= p - 1) ->
(1 <= r) -> (r <= p - 1) ->
q < (q * p + r) / (p * (1 + (2#1)^(-63))^2).
Proof.
intros.
rewrite Qlt_mult_by_z with (z := (p * (1 + (2#1)^(-63))^2)).
unfold Qdiv.
rewrite <- Qmult_assoc.
rewrite (Qmult_comm (/ (p * (1 + (2 # 1) ^ (-63)) ^ 2)) (p * (1 + (2 # 1) ^ (-63)) ^ 2)).
rewrite Qmult_inv_r.
rewrite Qmult_1_r.
assert (q * (p * (1 + (2 # 1) ^ (-63)) ^ 2) == q * p + (q * p) * ((2 # 1) ^ (-62) + (2 # 1) ^ (-126))).
qreduce ((1 + (2 # 1) ^ (-63)) ^ 2).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
ring_simplify.
reflexivity.
rewrite H5.
rewrite Qplus_comm.
rewrite Qlt_move_right.
ring_simplify (q * p + r - q * p).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
apply Qlt_le_trans with (y := 1).
rewrite Qlt_mult_by_z with (z := 85070591730234615865843651857942052864 # 18446744073709551617).
ring_simplify.
apply Qle_lt_trans with (y := ((2 # 1) ^ 31 - (2#1)) * ((2 # 1) ^ 31 - 1)).
apply Qle_mult_quad.
assumption. psatzl Q. psatzl Q. psatzl Q. psatzl Q. psatzl Q. assumption. psatzl Q. psatzl Q.
Qed.
Theorem qest_lt_qplus1:
forall (p q r:Q),
(0 < p) -> (p <= (2#1)^31 - 1) ->
(0 <= q) -> (q <= p - 1) ->
(1 <= r) -> (r <= p - 1) ->
((q * p + r) * (1 + (2#1)^(-63))^2) / p < q + 1.
Proof.
intros.
rewrite Qlt_mult_by_z with (z := p).
unfold Qdiv.
rewrite <- Qmult_assoc.
rewrite (Qmult_comm (/ p) p).
rewrite Qmult_inv_r.
rewrite Qmult_1_r.
assert ((q * p + r) * (1 + (2 # 1) ^ (-63)) ^ 2 == q * p + r + (q * p + r) * ((2 # 1) ^ (-62) + (2 # 1) ^ (-126))).
qreduce ((1 + (2 # 1) ^ (-63)) ^ 2).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
ring_simplify. reflexivity.
rewrite H5.
rewrite <- Qplus_assoc. rewrite <- Qplus_comm. rewrite Qlt_move_right.
ring_simplify ((q + 1) * p - q * p).
rewrite <- Qplus_comm. rewrite Qlt_move_right.
apply Qlt_le_trans with (y := 1).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
rewrite Qlt_mult_by_z with (z := 85070591730234615865843651857942052864 # 18446744073709551617).
ring_simplify.
ring_simplify in H0.
apply Qle_lt_trans with (y := (2147483646 # 1) * (2147483647 # 1) + (2147483646 # 1)).
apply Qplus_le_compat.
apply Qle_mult_quad.
assumption. psatzl Q. auto with qarith. assumption. psatzl Q.
auto with qarith. auto with qarith.
psatzl Q. psatzl Q. assumption.
Qed.