//===-- HLFIRDialect.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "flang/Optimizer/HLFIR/HLFIRTypes.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "flang/Optimizer/HLFIR/HLFIRAttributes.cpp.inc"
void hlfir::hlfirDialect::initialize() {
addTypes<
#define GET_TYPEDEF_LIST
#include "flang/Optimizer/HLFIR/HLFIRTypes.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "flang/Optimizer/HLFIR/HLFIROps.cpp.inc"
>();
}
// `expr` `<` `*` | bounds (`x` bounds)* `:` type [`?`] `>`
// bounds ::= `?` | int-lit
mlir::Type hlfir::ExprType::parse(mlir::AsmParser &parser) {
if (parser.parseLess())
return {};
ExprType::Shape shape;
if (parser.parseOptionalStar()) {
if (parser.parseDimensionList(shape, /*allowDynamic=*/true))
return {};
} else if (parser.parseColon()) {
return {};
}
mlir::Type eleTy;
if (parser.parseType(eleTy))
return {};
const bool polymorphic = mlir::succeeded(parser.parseOptionalQuestion());
if (parser.parseGreater())
return {};
return ExprType::get(parser.getContext(), shape, eleTy, polymorphic);
}
void hlfir::ExprType::print(mlir::AsmPrinter &printer) const {
auto shape = getShape();
printer << '<';
if (shape.size()) {
for (const auto &b : shape) {
if (b >= 0)
printer << b << 'x';
else
printer << "?x";
}
}
printer << getEleTy();
if (isPolymorphic())
printer << '?';
printer << '>';
}
bool hlfir::isFortranVariableType(mlir::Type type) {
return llvm::TypeSwitch<mlir::Type, bool>(type)
.Case<fir::ReferenceType, fir::PointerType, fir::HeapType>([](auto p) {
mlir::Type eleType = p.getEleTy();
return mlir::isa<fir::BaseBoxType>(eleType) ||
!fir::hasDynamicSize(eleType);
})
.Case<fir::BaseBoxType, fir::BoxCharType>([](auto) { return true; })
.Case<fir::VectorType>([](auto) { return true; })
.Default([](mlir::Type) { return false; });
}
bool hlfir::isFortranScalarCharacterType(mlir::Type type) {
return isFortranScalarCharacterExprType(type) ||
mlir::isa<fir::BoxCharType>(type) ||
mlir::isa<fir::CharacterType>(
fir::unwrapPassByRefType(fir::unwrapRefType(type)));
}
bool hlfir::isFortranScalarCharacterExprType(mlir::Type type) {
if (auto exprType = mlir::dyn_cast<hlfir::ExprType>(type))
return exprType.isScalar() &&
mlir::isa<fir::CharacterType>(exprType.getElementType());
return false;
}
bool hlfir::isFortranArrayCharacterExprType(mlir::Type type) {
if (auto exprType = mlir::dyn_cast<hlfir::ExprType>(type))
return exprType.isArray() &&
mlir::isa<fir::CharacterType>(exprType.getElementType());
return false;
}
bool hlfir::isFortranScalarNumericalType(mlir::Type type) {
return fir::isa_integer(type) || fir::isa_real(type) ||
fir::isa_complex(type);
}
bool hlfir::isFortranNumericalArrayObject(mlir::Type type) {
if (isBoxAddressType(type))
return false;
if (auto arrayTy = mlir::dyn_cast<fir::SequenceType>(
getFortranElementOrSequenceType(type)))
return isFortranScalarNumericalType(arrayTy.getEleTy());
return false;
}
bool hlfir::isFortranNumericalOrLogicalArrayObject(mlir::Type type) {
if (isBoxAddressType(type))
return false;
if (auto arrayTy = mlir::dyn_cast<fir::SequenceType>(
getFortranElementOrSequenceType(type))) {
mlir::Type eleTy = arrayTy.getEleTy();
return isFortranScalarNumericalType(eleTy) ||
mlir::isa<fir::LogicalType>(eleTy);
}
return false;
}
bool hlfir::isFortranArrayObject(mlir::Type type) {
if (isBoxAddressType(type))
return false;
return !!mlir::dyn_cast<fir::SequenceType>(
getFortranElementOrSequenceType(type));
}
bool hlfir::isPassByRefOrIntegerType(mlir::Type type) {
mlir::Type unwrappedType = fir::unwrapPassByRefType(type);
return fir::isa_integer(unwrappedType);
}
bool hlfir::isI1Type(mlir::Type type) {
if (mlir::IntegerType integer = mlir::dyn_cast<mlir::IntegerType>(type))
if (integer.getWidth() == 1)
return true;
return false;
}
bool hlfir::isFortranLogicalArrayObject(mlir::Type type) {
if (isBoxAddressType(type))
return false;
if (auto arrayTy = mlir::dyn_cast<fir::SequenceType>(
getFortranElementOrSequenceType(type))) {
mlir::Type eleTy = arrayTy.getEleTy();
return mlir::isa<fir::LogicalType>(eleTy);
}
return false;
}
bool hlfir::isMaskArgument(mlir::Type type) {
if (isBoxAddressType(type))
return false;
mlir::Type unwrappedType = fir::unwrapPassByRefType(fir::unwrapRefType(type));
mlir::Type elementType = getFortranElementType(unwrappedType);
if (unwrappedType != elementType)
// input type is an array
return mlir::isa<fir::LogicalType>(elementType);
// input is a scalar, so allow i1 too
return mlir::isa<fir::LogicalType>(elementType) || isI1Type(elementType);
}
bool hlfir::isPolymorphicObject(mlir::Type type) {
if (auto exprType = mlir::dyn_cast<hlfir::ExprType>(type))
return exprType.isPolymorphic();
return fir::isPolymorphicType(type);
}
mlir::Value hlfir::genExprShape(mlir::OpBuilder &builder,
const mlir::Location &loc,
const hlfir::ExprType &expr) {
mlir::IndexType indexTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> extents;
extents.reserve(expr.getRank());
for (std::int64_t extent : expr.getShape()) {
if (extent == hlfir::ExprType::getUnknownExtent())
return {};
extents.emplace_back(builder.create<mlir::arith::ConstantOp>(
loc, indexTy, builder.getIntegerAttr(indexTy, extent)));
}
fir::ShapeType shapeTy =
fir::ShapeType::get(builder.getContext(), expr.getRank());
fir::ShapeOp shape = builder.create<fir::ShapeOp>(loc, shapeTy, extents);
return shape.getResult();
}
bool hlfir::mayHaveAllocatableComponent(mlir::Type ty) {
return fir::isPolymorphicType(ty) || fir::isUnlimitedPolymorphicType(ty) ||
fir::isRecordWithAllocatableMember(hlfir::getFortranElementType(ty));
}