llvm/llvm/include/llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h

//===- LazyRandomTypeCollection.h -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_DEBUGINFO_CODEVIEW_LAZYRANDOMTYPECOLLECTION_H
#define LLVM_DEBUGINFO_CODEVIEW_LAZYRANDOMTYPECOLLECTION_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/CodeView/TypeCollection.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/StringSaver.h"
#include <cstdint>
#include <vector>

namespace llvm {
namespace codeview {

/// Provides amortized O(1) random access to a CodeView type stream.
/// Normally to access a type from a type stream, you must know its byte
/// offset into the type stream, because type records are variable-lengthed.
/// However, this is not the way we prefer to access them.  For example, given
/// a symbol record one of the fields may be the TypeIndex of the symbol's
/// type record.  Or given a type record such as an array type, there might
/// be a TypeIndex for the element type.  Sequential access is perfect when
/// we're just dumping every entry, but it's very poor for real world usage.
///
/// Type streams in PDBs contain an additional field which is a list of pairs
/// containing indices and their corresponding offsets, roughly every ~8KB of
/// record data.  This general idea need not be confined to PDBs though.  By
/// supplying such an array, the producer of a type stream can allow the
/// consumer much better access time, because the consumer can find the nearest
/// index in this array, and do a linear scan forward only from there.
///
/// LazyRandomTypeCollection implements this algorithm, but additionally goes
/// one step further by caching offsets of every record that has been visited at
/// least once.  This way, even repeated visits of the same record will never
/// require more than one linear scan.  For a type stream of N elements divided
/// into M chunks of roughly equal size, this yields a worst case lookup time
/// of O(N/M) and an amortized time of O(1).
class LazyRandomTypeCollection : public TypeCollection {};

} // end namespace codeview
} // end namespace llvm

#endif // LLVM_DEBUGINFO_CODEVIEW_LAZYRANDOMTYPECOLLECTION_H