//===-- Single-precision log(x) function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/logf.h" #include "common_constants.h" // Lookup table for (1/f) and log(f) #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // This is an algorithm for log(x) in single precision which is correctly // rounded for all rounding modes, based on the implementation of log(x) from // the RLIBM project at: // https://people.cs.rutgers.edu/~sn349/rlibm // Step 1 - Range reduction: // For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m) // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting // m by 23. // Step 2 - Another range reduction: // To compute log(1.mant), let f be the highest 8 bits including the hidden // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the // mantissa. Then we have the following approximation formula: // log(1.mant) = log(f) + log(1.mant / f) // = log(f) + log(1 + d/f) // ~ log(f) + P(d/f) // since d/f is sufficiently small. // log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. // Step 3 - Polynomial approximation: // To compute P(d/f), we use a single degree-5 polynomial in double precision // which provides correct rounding for all but few exception values. // For more detail about how this polynomial is obtained, please refer to the // paper: // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce // Correctly Rounded Results of an Elementary Function for Multiple // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, // USA, January 16-22, 2022. // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, logf, (float x)) { … } } // namespace LIBC_NAMESPACE_DECL