#include "sanitizer_fuchsia.h"
#if SANITIZER_FUCHSIA
# include <pthread.h>
# include <stdlib.h>
# include <unistd.h>
# include <zircon/errors.h>
# include <zircon/process.h>
# include <zircon/syscalls.h>
# include <zircon/utc.h>
# include "sanitizer_common.h"
# include "sanitizer_interface_internal.h"
# include "sanitizer_libc.h"
# include "sanitizer_mutex.h"
namespace __sanitizer {
void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
uptr internal_sched_yield() {
zx_status_t status = _zx_thread_legacy_yield(0u);
CHECK_EQ(status, ZX_OK);
return 0;
}
void internal_usleep(u64 useconds) {
zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
CHECK_EQ(status, ZX_OK);
}
u64 NanoTime() {
zx_handle_t utc_clock = _zx_utc_reference_get();
CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
zx_time_t time;
zx_status_t status = _zx_clock_read(utc_clock, &time);
CHECK_EQ(status, ZX_OK);
return time;
}
u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
uptr internal_getpid() {
zx_info_handle_basic_t info;
zx_status_t status =
_zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
sizeof(info), NULL, NULL);
CHECK_EQ(status, ZX_OK);
uptr pid = static_cast<uptr>(info.koid);
CHECK_EQ(pid, info.koid);
return pid;
}
int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
tid_t GetTid() { return GetThreadSelf(); }
void Abort() { abort(); }
int Atexit(void (*function)(void)) { return atexit(function); }
void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
pthread_attr_t attr;
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
void *base;
size_t size;
CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
CHECK_EQ(pthread_attr_destroy(&attr), 0);
*stack_bottom = reinterpret_cast<uptr>(base);
*stack_top = *stack_bottom + size;
}
void InitializePlatformEarly() {}
void CheckASLR() {}
void CheckMPROTECT() {}
void PlatformPrepareForSandboxing(void *args) {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}
bool SignalContext::IsStackOverflow() const { return false; }
void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
void FutexWait(atomic_uint32_t *p, u32 cmp) {
zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
if (status != ZX_ERR_BAD_STATE)
CHECK_EQ(status, ZX_OK);
}
void FutexWake(atomic_uint32_t *p, u32 count) {
zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
CHECK_EQ(status, ZX_OK);
}
uptr GetPageSize() { return _zx_system_get_page_size(); }
uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
sanitizer_shadow_bounds_t ShadowBounds;
void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
uptr GetMaxUserVirtualAddress() {
InitShadowBounds();
return ShadowBounds.memory_limit - 1;
}
uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; }
constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20;
static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID;
static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) {
zx_status_t status = ZX_OK;
if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) {
CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0);
uintptr_t base;
status = _zx_vmar_allocate(
_zx_vmar_root_self(),
ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base);
}
*vmar = gSanitizerHeapVmar;
if (status == ZX_OK)
CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID);
return status;
}
static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options,
size_t vmar_offset, zx_handle_t vmo,
size_t size, uintptr_t *addr,
zx_handle_t *vmar_used = nullptr) {
zx_handle_t vmar;
zx_status_t status = GetSanitizerHeapVmar(&vmar);
if (status != ZX_OK)
return status;
status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo,
0, size, addr);
if (vmar_used)
*vmar_used = gSanitizerHeapVmar;
if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) {
status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo,
0, size, addr);
if (vmar_used)
*vmar_used = _zx_vmar_root_self();
}
return status;
}
static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
bool raw_report, bool die_for_nomem) {
size = RoundUpTo(size, GetPageSize());
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
raw_report);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
uintptr_t addr;
status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, vmo, size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
raw_report);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
return DoAnonymousMmapOrDie(size, mem_type, false, false);
}
uptr ReservedAddressRange::Init(uptr init_size, const char *name,
uptr fixed_addr) {
init_size = RoundUpTo(init_size, GetPageSize());
DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
uintptr_t base;
zx_handle_t vmar;
zx_status_t status = _zx_vmar_allocate(
_zx_vmar_root_self(),
ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
init_size, &vmar, &base);
if (status != ZX_OK)
ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
base_ = reinterpret_cast<void *>(base);
size_ = init_size;
name_ = name;
os_handle_ = vmar;
return reinterpret_cast<uptr>(base_);
}
static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
void *base, const char *name, bool die_for_nomem) {
uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
map_size = RoundUpTo(map_size, GetPageSize());
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
return 0;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
DCHECK_GE(base + size_, map_size + offset);
uintptr_t addr;
status =
_zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
offset, vmo, 0, map_size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
}
return 0;
}
IncreaseTotalMmap(map_size);
return addr;
}
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name ? name : name_, false);
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name ? name : name_, true);
}
void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar,
bool raw_report) {
if (!addr || !size)
return;
size = RoundUpTo(size, GetPageSize());
zx_status_t status =
_zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) {
status = _zx_vmar_unmap(_zx_vmar_root_self(),
reinterpret_cast<uintptr_t>(addr), size);
}
if (status != ZX_OK)
ReportMunmapFailureAndDie(addr, size, status, raw_report);
DecreaseTotalMmap(size);
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
CHECK_LE(size, size_);
const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
if (addr == reinterpret_cast<uptr>(base_)) {
if (size == size_) {
_zx_vmar_destroy(vmar);
_zx_handle_close(vmar);
os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
DecreaseTotalMmap(size);
return;
}
} else {
CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
}
UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar,
false);
}
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
UNIMPLEMENTED();
}
bool MprotectNoAccess(uptr addr, uptr size) {
return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
}
bool MprotectReadOnly(uptr addr, uptr size) {
return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
ZX_OK;
}
bool MprotectReadWrite(uptr addr, uptr size) {
return _zx_vmar_protect(_zx_vmar_root_self(),
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr,
size) == ZX_OK;
}
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK_GE(size, GetPageSize());
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
size_t map_size = size + alignment;
uintptr_t addr;
zx_handle_t vmar_used;
status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
0, vmo, map_size, &addr,
&vmar_used);
if (status == ZX_OK) {
uintptr_t map_addr = addr;
uintptr_t map_end = map_addr + map_size;
addr = RoundUpTo(map_addr, alignment);
uintptr_t end = addr + size;
if (addr != map_addr) {
zx_info_vmar_t info;
status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info),
NULL, NULL);
if (status == ZX_OK) {
uintptr_t new_addr;
status = _zx_vmar_map(
vmar_used,
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
addr - info.base, vmo, 0, size, &new_addr);
if (status == ZX_OK)
CHECK_EQ(new_addr, addr);
}
}
if (status == ZX_OK && addr != map_addr)
status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr);
if (status == ZX_OK && end != map_end)
status = _zx_vmar_unmap(vmar_used, end, map_end - end);
}
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void UnmapOrDie(void *addr, uptr size, bool raw_report) {
UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report);
}
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
uptr beg_aligned = RoundUpTo(beg, GetPageSize());
uptr end_aligned = RoundDownTo(end, GetPageSize());
if (beg_aligned < end_aligned) {
zx_handle_t root_vmar = _zx_vmar_root_self();
CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
zx_status_t status =
_zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
end_aligned - beg_aligned, nullptr, 0);
CHECK_EQ(status, ZX_OK);
}
}
void DumpProcessMap() {
return;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status == ZX_OK) {
status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
_zx_handle_close(vmo);
}
return status == ZX_OK;
}
void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len, error_t *errno_p) {
*errno_p = ZX_ERR_NOT_SUPPORTED;
return false;
}
void RawWrite(const char *buffer) {
constexpr size_t size = 128;
static _Thread_local char line[size];
static _Thread_local size_t lastLineEnd = 0;
static _Thread_local size_t cur = 0;
while (*buffer) {
if (cur >= size) {
if (lastLineEnd == 0)
lastLineEnd = size;
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
if (*buffer == '\n')
lastLineEnd = cur + 1;
line[cur++] = *buffer++;
}
if (lastLineEnd != 0) {
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
}
void CatastrophicErrorWrite(const char *buffer, uptr length) {
__sanitizer_log_write(buffer, length);
}
char **StoredArgv;
char **StoredEnviron;
char **GetArgv() { return StoredArgv; }
char **GetEnviron() { return StoredEnviron; }
const char *GetEnv(const char *name) {
if (StoredEnviron) {
uptr NameLen = internal_strlen(name);
for (char **Env = StoredEnviron; *Env != 0; Env++) {
if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
return (*Env) + NameLen + 1;
}
}
return nullptr;
}
uptr ReadBinaryName( char *buf, uptr buf_len) {
const char *argv0 = "<UNKNOWN>";
if (StoredArgv && StoredArgv[0]) {
argv0 = StoredArgv[0];
}
internal_strncpy(buf, argv0, buf_len);
return internal_strlen(buf);
}
uptr ReadLongProcessName( char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
uptr MainThreadStackBase, MainThreadStackSize;
bool GetRandom(void *buffer, uptr length, bool blocking) {
CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
_zx_cprng_draw(buffer, length);
return true;
}
u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
uptr GetRSS() { UNIMPLEMENTED(); }
void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) {}
void InitializePlatformCommonFlags(CommonFlags *cf) {}
}
using namespace __sanitizer;
extern "C" {
void __sanitizer_startup_hook(int argc, char **argv, char **envp,
void *stack_base, size_t stack_size) {
__sanitizer::StoredArgv = argv;
__sanitizer::StoredEnviron = envp;
__sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
__sanitizer::MainThreadStackSize = stack_size;
}
void __sanitizer_set_report_path(const char *path) {
DCHECK_EQ(path, common_flags()->log_path);
}
void __sanitizer_set_report_fd(void *fd) {
UNREACHABLE("not available on Fuchsia");
}
const char *__sanitizer_get_report_path() {
UNREACHABLE("not available on Fuchsia");
}
}
#endif