#ifndef SCUDO_MEMTAG_H_
#define SCUDO_MEMTAG_H_
#include "internal_defs.h"
#if SCUDO_CAN_USE_MTE
#include <sys/auxv.h>
#include <sys/prctl.h>
#endif
namespace scudo {
#if (__clang_major__ >= 12 && defined(__aarch64__) && !defined(__ILP32__)) || \
defined(SCUDO_FUZZ)
#if SCUDO_CAN_USE_MTE && !defined(SCUDO_DISABLE_TBI) && \
!__has_feature(hwaddress_sanitizer)
inline constexpr bool archSupportsMemoryTagging() { return true; }
#else
inline constexpr bool archSupportsMemoryTagging() { return false; }
#endif
inline constexpr uptr archMemoryTagGranuleSize() { return 16; }
inline uptr untagPointer(uptr Ptr) { return Ptr & ((1ULL << 56) - 1); }
inline uint8_t extractTag(uptr Ptr) { return (Ptr >> 56) & 0xf; }
#else
inline constexpr bool archSupportsMemoryTagging() { … }
inline NORETURN uptr archMemoryTagGranuleSize() { … }
inline NORETURN uptr untagPointer(uptr Ptr) { … }
inline NORETURN uint8_t extractTag(uptr Ptr) { … }
#endif
#if __clang_major__ >= 12 && defined(__aarch64__) && !defined(__ILP32__)
#if SCUDO_CAN_USE_MTE
inline bool systemSupportsMemoryTagging() {
#ifndef HWCAP2_MTE
#define HWCAP2_MTE …
#endif
return getauxval(AT_HWCAP2) & HWCAP2_MTE;
}
inline bool systemDetectsMemoryTagFaultsTestOnly() {
#ifndef PR_SET_TAGGED_ADDR_CTRL
#define PR_SET_TAGGED_ADDR_CTRL …
#endif
#ifndef PR_GET_TAGGED_ADDR_CTRL
#define PR_GET_TAGGED_ADDR_CTRL …
#endif
#ifndef PR_TAGGED_ADDR_ENABLE
#define PR_TAGGED_ADDR_ENABLE …
#endif
#ifndef PR_MTE_TCF_SHIFT
#define PR_MTE_TCF_SHIFT …
#endif
#ifndef PR_MTE_TAG_SHIFT
#define PR_MTE_TAG_SHIFT …
#endif
#ifndef PR_MTE_TCF_NONE
#define PR_MTE_TCF_NONE …
#endif
#ifndef PR_MTE_TCF_SYNC
#define PR_MTE_TCF_SYNC …
#endif
#ifndef PR_MTE_TCF_MASK
#define PR_MTE_TCF_MASK …
#endif
int res = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
if (res == -1)
return false;
return (static_cast<unsigned long>(res) & PR_MTE_TCF_MASK) != PR_MTE_TCF_NONE;
}
inline void enableSystemMemoryTaggingTestOnly() {
prctl(PR_SET_TAGGED_ADDR_CTRL,
PR_TAGGED_ADDR_ENABLE | PR_MTE_TCF_SYNC | (0xfffe << PR_MTE_TAG_SHIFT),
0, 0, 0);
}
#else
inline bool systemSupportsMemoryTagging() { return false; }
inline NORETURN bool systemDetectsMemoryTagFaultsTestOnly() {
UNREACHABLE("memory tagging not supported");
}
inline NORETURN void enableSystemMemoryTaggingTestOnly() {
UNREACHABLE("memory tagging not supported");
}
#endif
class ScopedDisableMemoryTagChecks {
uptr PrevTCO;
public:
ScopedDisableMemoryTagChecks() {
__asm__ __volatile__(
R"(
.arch_extension memtag
mrs %0, tco
msr tco, #1
)"
: "=r"(PrevTCO));
}
~ScopedDisableMemoryTagChecks() {
__asm__ __volatile__(
R"(
.arch_extension memtag
msr tco, %0
)"
:
: "r"(PrevTCO));
}
};
inline uptr selectRandomTag(uptr Ptr, uptr ExcludeMask) {
ExcludeMask |= 1;
uptr TaggedPtr;
__asm__ __volatile__(
R"(
.arch_extension memtag
irg %[TaggedPtr], %[Ptr], %[ExcludeMask]
)"
: [TaggedPtr] "=r"(TaggedPtr)
: [Ptr] "r"(Ptr), [ExcludeMask] "r"(ExcludeMask));
return TaggedPtr;
}
inline uptr addFixedTag(uptr Ptr, uptr Tag) {
DCHECK_LT(Tag, 16);
DCHECK_EQ(untagPointer(Ptr), Ptr);
return Ptr | (Tag << 56);
}
inline uptr storeTags(uptr Begin, uptr End) {
DCHECK_EQ(0, Begin % 16);
uptr LineSize, Next, Tmp;
__asm__ __volatile__(
R"(
.arch_extension memtag
// Compute the cache line size in bytes (DCZID_EL0 stores it as the log2
// of the number of 4-byte words) and bail out to the slow path if DCZID_EL0
// indicates that the DC instructions are unavailable.
DCZID .req %[Tmp]
mrs DCZID, dczid_el0
tbnz DCZID, #4, 3f
and DCZID, DCZID, #15
mov %[LineSize], #4
lsl %[LineSize], %[LineSize], DCZID
.unreq DCZID
// Our main loop doesn't handle the case where we don't need to perform any
// DC GZVA operations. If the size of our tagged region is less than
// twice the cache line size, bail out to the slow path since it's not
// guaranteed that we'll be able to do a DC GZVA.
Size .req %[Tmp]
sub Size, %[End], %[Cur]
cmp Size, %[LineSize], lsl #1
b.lt 3f
.unreq Size
LineMask .req %[Tmp]
sub LineMask, %[LineSize], #1
// STZG until the start of the next cache line.
orr %[Next], %[Cur], LineMask
1:
stzg %[Cur], [%[Cur]], #16
cmp %[Cur], %[Next]
b.lt 1b
// DC GZVA cache lines until we have no more full cache lines.
bic %[Next], %[End], LineMask
.unreq LineMask
2:
dc gzva, %[Cur]
add %[Cur], %[Cur], %[LineSize]
cmp %[Cur], %[Next]
b.lt 2b
// STZG until the end of the tagged region. This loop is also used to handle
// slow path cases.
3:
cmp %[Cur], %[End]
b.ge 4f
stzg %[Cur], [%[Cur]], #16
b 3b
4:
)"
: [Cur] "+&r"(Begin), [LineSize] "=&r"(LineSize), [Next] "=&r"(Next),
[Tmp] "=&r"(Tmp)
: [End] "r"(End)
: "memory");
DCHECK_EQ(0, Begin % 16);
return Begin;
}
inline void storeTag(uptr Ptr) {
DCHECK_EQ(0, Ptr % 16);
__asm__ __volatile__(R"(
.arch_extension memtag
stg %0, [%0]
)"
:
: "r"(Ptr)
: "memory");
}
inline uptr loadTag(uptr Ptr) {
DCHECK_EQ(0, Ptr % 16);
uptr TaggedPtr = Ptr;
__asm__ __volatile__(
R"(
.arch_extension memtag
ldg %0, [%0]
)"
: "+r"(TaggedPtr)
:
: "memory");
return TaggedPtr;
}
#else
inline NORETURN bool systemSupportsMemoryTagging() { … }
inline NORETURN bool systemDetectsMemoryTagFaultsTestOnly() { … }
inline NORETURN void enableSystemMemoryTaggingTestOnly() { … }
struct ScopedDisableMemoryTagChecks { … };
inline NORETURN uptr selectRandomTag(uptr Ptr, uptr ExcludeMask) { … }
inline NORETURN uptr addFixedTag(uptr Ptr, uptr Tag) { … }
inline NORETURN uptr storeTags(uptr Begin, uptr End) { … }
inline NORETURN void storeTag(uptr Ptr) { … }
inline NORETURN uptr loadTag(uptr Ptr) { … }
#endif
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-noreturn"
inline void setRandomTag(void *Ptr, uptr Size, uptr ExcludeMask,
uptr *TaggedBegin, uptr *TaggedEnd) { … }
#pragma GCC diagnostic pop
inline void *untagPointer(void *Ptr) { … }
inline void *loadTag(void *Ptr) { … }
inline void *addFixedTag(void *Ptr, uptr Tag) { … }
template <typename Config>
inline constexpr bool allocatorSupportsMemoryTagging() { … }
}
#endif