; RUN: llc < %s -mtriple=ve | FileCheck %s
;;; Test ‘fneg’ Instruction
;;;
;;; Syntax:
;;; <result> = fneg ptr <ty> <op1> ; yields ty:result
;;;
;;; Overview:
;;; The ‘fneg’ instruction returns the negation of its operand.
;;;
;;; Arguments:
;;; The argument to the ‘fneg’ instruction must be a floating-point or
;;; vector of floating-point values.
;;;
;;; Semantics:
;;;
;;; The value produced is a copy of the operand with its sign bit flipped.
;;; This instruction can also take any number of fast-math flags, which are
;;; optimization hints to enable otherwise unsafe floating-point
;;; optimizations.
;;;
;;; Example:
;;; <result> = fneg float %val ; yields float:result = -%var
;;;
;;; Note:
;;; We test only float/double/fp128.
; Function Attrs: norecurse nounwind readnone
define float @fneg_float(float %0) {
; CHECK-LABEL: fneg_float:
; CHECK: # %bb.0:
; CHECK-NEXT: sra.l %s0, %s0, 32
; CHECK-NEXT: lea %s1, -2147483648
; CHECK-NEXT: and %s1, %s1, (32)0
; CHECK-NEXT: xor %s0, %s0, %s1
; CHECK-NEXT: sll %s0, %s0, 32
; CHECK-NEXT: b.l.t (, %s10)
%2 = fneg float %0
ret float %2
}
; Function Attrs: norecurse nounwind readnone
define double @fneg_double(double %0) {
; CHECK-LABEL: fneg_double:
; CHECK: # %bb.0:
; CHECK-NEXT: xor %s0, %s0, (1)1
; CHECK-NEXT: b.l.t (, %s10)
%2 = fneg double %0
ret double %2
}
; Function Attrs: norecurse nounwind readnone
define fp128 @fneg_quad(fp128 %0) {
; CHECK-LABEL: fneg_quad:
; CHECK: .LBB{{[0-9]+}}_2:
; CHECK-NEXT: st %s1, (, %s11)
; CHECK-NEXT: st %s0, 8(, %s11)
; CHECK-NEXT: ld1b.zx %s0, 15(, %s11)
; CHECK-NEXT: lea %s1, 128
; CHECK-NEXT: xor %s0, %s0, %s1
; CHECK-NEXT: st1b %s0, 15(, %s11)
; CHECK-NEXT: ld %s1, (, %s11)
; CHECK-NEXT: ld %s0, 8(, %s11)
; CHECK-NEXT: adds.l %s11, 16, %s11
; CHECK-NEXT: b.l.t (, %s10)
%2 = fneg fp128 %0
ret fp128 %2
}