; This test is designed to run twice, once with function attributes and once
; with target attributes added on the command line.
;
; RUN: cat %s > %t.tgtattr
; RUN: echo 'attributes #0 = { nounwind }' >> %t.tgtattr
; RUN: llc -mtriple=riscv32 -mattr=+c -filetype=obj \
; RUN: -disable-block-placement < %t.tgtattr \
; RUN: | llvm-objdump -d --triple=riscv32 --mattr=+c -M no-aliases - \
; RUN: | FileCheck -check-prefix=RV32IC %s
;
; RUN: cat %s > %t.fnattr
; RUN: echo 'attributes #0 = { nounwind "target-features"="+c" }' >> %t.fnattr
; RUN: llc -mtriple=riscv32 -filetype=obj \
; RUN: -disable-block-placement < %t.fnattr \
; RUN: | llvm-objdump -d --triple=riscv32 --mattr=+c -M no-aliases - \
; RUN: | FileCheck -check-prefix=RV32IC %s
; This acts as a basic correctness check for the codegen instruction compression
; path, verifying that the assembled file contains compressed instructions when
; expected. Handling of the compressed ISA is implemented so the same
; transformation patterns should be used whether compressing an input .s file or
; compressing codegen output. This file contains basic functionality checks to
; ensure that is working as expected. Particular care should be taken to test
; pseudo instructions.
; Note: TODOs in this file are only appropriate if they highlight a case where
; a generated instruction that can be compressed by an existing pattern isn't.
; It may be useful to have tests that indicate where better compression would be
; possible if alternative codegen choices were made, but they belong in a
; different test file.
define i32 @simple_arith(i32 %a, i32 %b) #0 {
; RV32IC-LABEL: <simple_arith>:
; RV32IC: addi a2, a0, 0x1
; RV32IC-NEXT: c.andi a2, 0xb
; RV32IC-NEXT: c.slli a2, 0x7
; RV32IC-NEXT: c.srai a1, 0x9
; RV32IC-NEXT: sub a0, a1, a0
; RV32IC-NEXT: c.add a0, a2
; RV32IC-NEXT: c.jr ra
%1 = add i32 %a, 1
%2 = and i32 %1, 11
%3 = shl i32 %2, 7
%4 = ashr i32 %b, 9
%5 = add i32 %3, %4
%6 = sub i32 %5, %a
ret i32 %6
}
define i32 @select(i32 %a, ptr %b) #0 {
; RV32IC-LABEL: <select>:
; RV32IC: c.lw a2, 0x0(a1)
; RV32IC-NEXT: c.beqz a2, 0x18
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: c.bnez a2, 0x1e
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: bltu a2, a0, 0x26
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: bgeu a0, a2, 0x2e
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: bltu a0, a2, 0x36
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: bgeu a2, a0, 0x3e
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: blt a2, a0, 0x46
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: bge a0, a2, 0x4e
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a2, 0x0(a1)
; RV32IC-NEXT: blt a0, a2, 0x56
; RV32IC-NEXT: c.mv a0, a2
; RV32IC-NEXT: c.lw a1, 0x0(a1)
; RV32IC-NEXT: bge a1, a0, 0x5e
; RV32IC-NEXT: c.mv a0, a1
; RV32IC-NEXT: c.jr ra
%val1 = load volatile i32, ptr %b
%tst1 = icmp eq i32 0, %val1
%val2 = select i1 %tst1, i32 %a, i32 %val1
%val3 = load volatile i32, ptr %b
%tst2 = icmp ne i32 0, %val3
%val4 = select i1 %tst2, i32 %val2, i32 %val3
%val5 = load volatile i32, ptr %b
%tst3 = icmp ugt i32 %val4, %val5
%val6 = select i1 %tst3, i32 %val4, i32 %val5
%val7 = load volatile i32, ptr %b
%tst4 = icmp uge i32 %val6, %val7
%val8 = select i1 %tst4, i32 %val6, i32 %val7
%val9 = load volatile i32, ptr %b
%tst5 = icmp ult i32 %val8, %val9
%val10 = select i1 %tst5, i32 %val8, i32 %val9
%val11 = load volatile i32, ptr %b
%tst6 = icmp ule i32 %val10, %val11
%val12 = select i1 %tst6, i32 %val10, i32 %val11
%val13 = load volatile i32, ptr %b
%tst7 = icmp sgt i32 %val12, %val13
%val14 = select i1 %tst7, i32 %val12, i32 %val13
%val15 = load volatile i32, ptr %b
%tst8 = icmp sge i32 %val14, %val15
%val16 = select i1 %tst8, i32 %val14, i32 %val15
%val17 = load volatile i32, ptr %b
%tst9 = icmp slt i32 %val16, %val17
%val18 = select i1 %tst9, i32 %val16, i32 %val17
%val19 = load volatile i32, ptr %b
%tst10 = icmp sle i32 %val18, %val19
%val20 = select i1 %tst10, i32 %val18, i32 %val19
ret i32 %val20
}
define i32 @pos_tiny() #0 {
; RV32IC-LABEL: <pos_tiny>:
; RV32IC: c.li a0, 0x12
; RV32IC-NEXT: c.jr ra
ret i32 18
}
define i32 @pos_i32() #0 {
; RV32IC-LABEL: <pos_i32>:
; RV32IC: lui a0, 0x67783
; RV32IC-NEXT: addi a0, a0, -0x511
; RV32IC-NEXT: c.jr ra
ret i32 1735928559
}
define i32 @pos_i32_half_compressible() #0 {
; RV32IC-LABEL: <pos_i32_half_compressible>:
; RV32IC: lui a0, 0x67782
; RV32IC-NEXT: c.addi a0, 0x1c
; RV32IC-NEXT: c.jr ra
ret i32 1735925788
}
define i32 @neg_tiny() #0 {
; RV32IC-LABEL: <neg_tiny>:
; RV32IC: c.li a0, -0x13
; RV32IC-NEXT: c.jr ra
ret i32 -19
}
define i32 @neg_i32() #0 {
; RV32IC-LABEL: <neg_i32>:
; RV32IC: lui a0, 0xdeadc
; RV32IC-NEXT: addi a0, a0, -0x111
; RV32IC-NEXT: c.jr ra
ret i32 -559038737
}
define i32 @pos_i32_hi20_only() #0 {
; RV32IC-LABEL: <pos_i32_hi20_only>:
; RV32IC: c.lui a0, 0x10
; RV32IC-NEXT: c.jr ra
ret i32 65536
}
define i32 @neg_i32_hi20_only() #0 {
; RV32IC-LABEL: <neg_i32_hi20_only>:
; RV32IC: c.lui a0, 0xffff0
; RV32IC-NEXT: c.jr ra
ret i32 -65536
}