; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4
; RUN: opt -disable-output "-passes=print<scalar-evolution>" -scalar-evolution-classify-expressions=0 < %s 2>&1 | FileCheck %s
define void @ule_from_zero(i32 %M, i32 %N) {
; CHECK-LABEL: 'ule_from_zero'
; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>)
; CHECK-NEXT: exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw>
; CHECK-NEXT: exit count for latch: %N
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>)
; CHECK-NEXT: symbolic max exit count for loop: (1 + (zext i32 %M to i64))<nuw><nsw>
; CHECK-NEXT: symbolic max exit count for latch: %N
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp ule i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nuw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @ule_from_one(i32 %M, i32 %N) {
; CHECK-LABEL: 'ule_from_one'
; CHECK-NEXT: Determining loop execution counts for: @ule_from_one
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (%M umin_seq (-1 + %N))
; CHECK-NEXT: exit count for loop: %M
; CHECK-NEXT: exit count for latch: (-1 + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (%M umin_seq (-1 + %N))
; CHECK-NEXT: symbolic max exit count for loop: %M
; CHECK-NEXT: symbolic max exit count for latch: (-1 + %N)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ 1, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp ule i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nuw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @ule_from_unknown(i32 %M, i32 %N, i32 %S) {
; CHECK-LABEL: 'ule_from_unknown'
; CHECK-NEXT: Determining loop execution counts for: @ule_from_unknown
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64))
; CHECK-NEXT: exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>))
; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64))
; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (zext i32 %S to i64))<nsw> + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64))<nuw><nsw>))
; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp ule i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nuw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @ule_from_zero_no_nuw(i32 %M, i32 %N) {
; CHECK-LABEL: 'ule_from_zero_no_nuw'
; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero_no_nuw
; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for latch: %N
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %N
; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for latch: %N
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))<nuw><nsw>)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: {0,+,1}<%loop> Added Flags: <nusw>
;
entry:
br label %loop
loop:
%iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp ule i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @sle_from_int_min(i32 %M, i32 %N) {
; CHECK-LABEL: 'sle_from_int_min'
; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>)
; CHECK-NEXT: exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw>
; CHECK-NEXT: exit count for latch: (-2147483648 + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>)
; CHECK-NEXT: symbolic max exit count for loop: (2147483649 + (sext i32 %M to i64))<nsw>
; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp sle i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nsw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @sle_from_int_min_plus_one(i32 %M, i32 %N) {
; CHECK-LABEL: 'sle_from_int_min_plus_one'
; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_plus_one
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N))
; CHECK-NEXT: exit count for loop: (-2147483648 + %M)
; CHECK-NEXT: exit count for latch: (2147483647 + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N))
; CHECK-NEXT: symbolic max exit count for loop: (-2147483648 + %M)
; CHECK-NEXT: symbolic max exit count for latch: (2147483647 + %N)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ u0x80000001, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp sle i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nsw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @sle_from_unknown(i32 %M, i32 %N, i32 %S) {
; CHECK-LABEL: 'sle_from_unknown'
; CHECK-NEXT: Determining loop execution counts for: @sle_from_unknown
; CHECK-NEXT: Loop %loop: <multiple exits> backedge-taken count is (((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64))
; CHECK-NEXT: exit count for loop: ((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>))
; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>)) umin_seq (zext i32 ((-1 * %S) + %N) to i64))
; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (sext i32 %S to i64))<nsw> + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64))<nsw>))
; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
br label %loop
loop:
%iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp sle i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add nsw i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @sle_from_int_min_no_nsw(i32 %M, i32 %N) {
; CHECK-LABEL: 'sle_from_int_min_no_nsw'
; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_no_nsw
; CHECK-NEXT: Loop %loop: <multiple exits> Unpredictable backedge-taken count.
; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE***
; CHECK-NEXT: exit count for latch: (-2147483648 + %N)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (-2147483648 + %N)
; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE***
; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))<nsw>)
; CHECK-NEXT: Predicates:
; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: <nssw>
;
entry:
br label %loop
loop:
%iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ]
%cmp1 = icmp sle i32 %iv, %M
br i1 %cmp1, label %latch, label %exit
latch:
%iv.next = add i32 %iv, 1
%exitcond.not = icmp eq i32 %iv, %N
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}