; RUN: opt < %s -cache-line-size=32 -passes='print<loop-cache-cost>' -disable-output 2>&1 | FileCheck -check-prefix=SMALLER-CACHELINE %s
; RUN: opt < %s -cache-line-size=256 -passes='print<loop-cache-cost>' -disable-output 2>&1 | FileCheck -check-prefix=LARGER-CACHELINE %s
;; This test is similar to test/Analysis/LoopCacheAnalysis/PowerPC/compute-cost.ll,
;; with differences that it tests the scenarios where an option for cache line size is
;; specified with different values.
; Check IndexedReference::computeRefCost can handle type differences between
; Stride and TripCount
; Round costs up to the nearest whole number i.e. in 'for.cond5' cost is calculated 12.5 and
; it makes more sense to say 13 cache lines are used rather than 12 cache lines.
; SMALLER-CACHELINE: Loop 'for.cond' has cost = 256
; LARGER-CACHELINE: Loop 'for.cond' has cost = 32
%struct._Handleitem = type { ptr }
define void @handle_to_ptr(ptr %blocks) {
; Preheader:
entry:
br label %for.cond
; Loop:
for.cond: ; preds = %for.body, %entry
%i.0 = phi i32 [ 1, %entry ], [ %inc, %for.body ]
%cmp = icmp ult i32 %i.0, 1024
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds ptr, ptr %blocks, i64 %idxprom
store ptr null, ptr %arrayidx, align 8
%inc = add nuw nsw i32 %i.0, 1
br label %for.cond
; Exit blocks
for.end: ; preds = %for.cond
ret void
}
; Check IndexedReference::computeRefCost can handle type differences between
; Coeff and ElemSize.
; SMALLER-CACHELINE: Loop 'for.cond' has cost = 100000000
; SMALLER-CACHELINE: Loop 'for.cond1' has cost = 1000000
; SMALLER-CACHELINE: Loop 'for.cond5' has cost = 130000
; LARGER-CACHELINE: Loop 'for.cond' has cost = 100000000
; LARGER-CACHELINE: Loop 'for.cond1' has cost = 1000000
; LARGER-CACHELINE: Loop 'for.cond5' has cost = 20000
@data = external dso_local global [2 x [4 x [18 x i32]]], align 1
define dso_local void @handle_to_ptr_2(i1 %b0, i1 %b1, i1 %b2) {
entry:
br label %for.cond
for.cond:
%i.0 = phi i16 [ 0, %entry ], [ %inc18, %for.inc17 ]
%idxprom = zext i16 %i.0 to i32
br i1 %b2, label %for.end19, label %for.cond1
for.cond1:
%j.0 = phi i16 [ %inc15, %for.inc14 ], [ 0, %for.cond ]
br i1 %b1, label %for.inc17, label %for.cond5.preheader
for.cond5.preheader:
%idxprom10 = zext i16 %j.0 to i32
br label %for.cond5
for.cond5:
%k.0 = phi i16 [ %inc, %for.inc ], [ 0, %for.cond5.preheader ]
br i1 %b0, label %for.inc14, label %for.inc
for.inc:
%idxprom12 = zext i16 %k.0 to i32
%arrayidx13 = getelementptr inbounds [2 x [4 x [18 x i32]]], ptr @data, i32 0, i32 %idxprom, i32 %idxprom10, i32 %idxprom12
store i32 7, ptr %arrayidx13, align 1
%inc = add nuw nsw i16 %k.0, 1
br label %for.cond5
for.inc14:
%inc15 = add nuw nsw i16 %j.0, 1
br label %for.cond1
for.inc17:
%inc18 = add nuw nsw i16 %i.0, 1
br label %for.cond
for.end19:
ret void
}
; Check IndexedReference::computeRefCost can handle negative stride
; SMALLER-CACHELINE: Loop 'for.neg.cond' has cost = 256
; LARGER-CACHELINE: Loop 'for.neg.cond' has cost = 32
define void @handle_to_ptr_neg_stride(ptr %blocks) {
; Preheader:
entry:
br label %for.neg.cond
; Loop:
for.neg.cond: ; preds = %for.neg.body, %entry
%i.0 = phi i32 [ 1023, %entry ], [ %dec, %for.neg.body ]
%cmp = icmp sgt i32 %i.0, 0
br i1 %cmp, label %for.neg.body, label %for.neg.end
for.neg.body: ; preds = %for.neg.cond
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds ptr, ptr %blocks, i64 %idxprom
store ptr null, ptr %arrayidx, align 8
%dec = add nsw i32 %i.0, -1
br label %for.neg.cond
; Exit blocks
for.neg.end: ; preds = %for.neg.cond
ret void
}
; for (int i = 40960; i > 0; i--)
; B[i] = B[40960 - i];
; FIXME: Currently negative access functions are treated the same as positive
; access functions. When this is fixed this testcase should have a cost
; approximately 2x higher.
; SMALLER-CACHELINE: Loop 'for.cond2' has cost = 10241
; LARGER-CACHELINE: Loop 'for.cond2' has cost = 1281
define void @Test2(ptr %B) {
entry:
br label %for.cond2
for.cond2: ; preds = %for.body, %entry
%i.0 = phi i32 [ 40960, %entry ], [ %dec, %for.body ]
%cmp = icmp sgt i32 %i.0, 0
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%sub = sub nsw i32 40960, %i.0
%idxprom = sext i32 %sub to i64
%arrayidx = getelementptr inbounds double, ptr %B, i64 %idxprom
%0 = load double, ptr %arrayidx, align 8
%idxprom1 = sext i32 %i.0 to i64
%arrayidx2 = getelementptr inbounds double, ptr %B, i64 %idxprom1
store double %0, ptr %arrayidx2, align 8
%dec = add nsw i32 %i.0, -1
br label %for.cond2
for.end: ; preds = %for.cond
ret void
}
; for (i = 40960; i > 0; i--)
; C[i] = C[i];
; SMALLER-CACHELINE: Loop 'for.cond3' has cost = 10241
; LARGER-CACHELINE: Loop 'for.cond3' has cost = 1281
define void @Test3(ptr %C) {
entry:
br label %for.cond3
for.cond3: ; preds = %for.body, %entry
%i.0 = phi i32 [ 40960, %entry ], [ %dec, %for.body ]
%cmp = icmp sgt i32 %i.0, 0
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%idxprom = sext i32 %i.0 to i64
%arrayidx = getelementptr inbounds ptr, ptr %C, i64 %idxprom
%0 = load ptr, ptr %arrayidx, align 8
%idxprom1 = sext i32 %i.0 to i64
%arrayidx2 = getelementptr inbounds ptr, ptr %C, i64 %idxprom1
store ptr %0, ptr %arrayidx2, align 8
%dec = add nsw i32 %i.0, -1
br label %for.cond3
for.end: ; preds = %for.cond
ret void
}
; for (i = 0; i < 40960; i++)
; D[i] = D[i];
; SMALLER-CACHELINE: Loop 'for.cond4' has cost = 10241
; LARGER-CACHELINE: Loop 'for.cond4' has cost = 1281
define void @Test4(ptr %D) {
entry:
br label %for.cond4
for.cond4: ; preds = %for.body, %entry
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%cmp = icmp slt i32 %i.0, 40960
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%idxprom = sext i32 %i.0 to i64
%arrayidx = getelementptr inbounds ptr, ptr %D, i64 %idxprom
%0 = load ptr, ptr %arrayidx, align 8
%idxprom1 = sext i32 %i.0 to i64
%arrayidx2 = getelementptr inbounds ptr, ptr %D, i64 %idxprom1
store ptr %0, ptr %arrayidx2, align 8
%inc = add nsw i32 %i.0, 1
br label %for.cond4
for.end: ; preds = %for.cond
ret void
}