=========================
RISC-V Vector Extension
=========================
.. contents::
:local:
The RISC-V target supports the 1.0 version of the `RISC-V Vector Extension (RVV) <https://github.com/riscv/riscv-v-spec/blob/v1.0/v-spec.adoc>`_.
This guide gives an overview of how it's modelled in LLVM IR and how the backend generates code for it.
Mapping to LLVM IR types
========================
RVV adds 32 VLEN sized registers, where VLEN is an unknown constant to the compiler. To be able to represent VLEN sized values, the RISC-V backend takes the same approach as AArch64's SVE and uses `scalable vector types <https://llvm.org/docs/LangRef.html#t-vector>`_.
Scalable vector types are of the form ``<vscale x n x ty>``, which indicates a vector with a multiple of ``n`` elements of type ``ty``.
On RISC-V ``n`` and ``ty`` control LMUL and SEW respectively.
LLVM only supports ELEN=32 or ELEN=64, so ``vscale`` is defined as VLEN/64 (see ``RISCV::RVVBitsPerBlock``).
Note this means that VLEN must be at least 64, so VLEN=32 isn't currently supported.
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| | LMUL=⅛ | LMUL=¼ | LMUL=½ | LMUL=1 | LMUL=2 | LMUL=4 | LMUL=8 |
+===================+===============+================+==================+===================+===================+===================+===================+
| i64 (ELEN=64) | N/A | N/A | N/A | <v x 1 x i64> | <v x 2 x i64> | <v x 4 x i64> | <v x 8 x i64> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| i32 | N/A | N/A | <v x 1 x i32> | <v x 2 x i32> | <v x 4 x i32> | <v x 8 x i32> | <v x 16 x i32> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| i16 | N/A | <v x 1 x i16> | <v x 2 x i16> | <v x 4 x i16> | <v x 8 x i16> | <v x 16 x i16> | <v x 32 x i16> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| i8 | <v x 1 x i8> | <v x 2 x i8> | <v x 4 x i8> | <v x 8 x i8> | <v x 16 x i8> | <v x 32 x i8> | <v x 64 x i8> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| double (ELEN=64) | N/A | N/A | N/A | <v x 1 x double> | <v x 2 x double> | <v x 4 x double> | <v x 8 x double> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| float | N/A | N/A | <v x 1 x float> | <v x 2 x float> | <v x 4 x float> | <v x 8 x float> | <v x 16 x float> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
| half | N/A | <v x 1 x half> | <v x 2 x half> | <v x 4 x half> | <v x 8 x half> | <v x 16 x half> | <v x 32 x half> |
+-------------------+---------------+----------------+------------------+-------------------+-------------------+-------------------+-------------------+
(Read ``<v x k x ty>`` as ``<vscale x k x ty>``)
Mask vector types
-----------------
Mask vectors are physically represented using a layout of densely packed bits in a vector register.
They are mapped to the following LLVM IR types:
- ``<vscale x 1 x i1>``
- ``<vscale x 2 x i1>``
- ``<vscale x 4 x i1>``
- ``<vscale x 8 x i1>``
- ``<vscale x 16 x i1>``
- ``<vscale x 32 x i1>``
- ``<vscale x 64 x i1>``
Two types with the same SEW/LMUL ratio will have the same related mask type.
For instance, two different comparisons one under SEW=64, LMUL=2 and the other under SEW=32, LMUL=1 will both generate a mask ``<vscale x 2 x i1>``.
Representation in LLVM IR
=========================
Vector instructions can be represented in three main ways in LLVM IR:
1. Regular instructions on both scalable and fixed-length vector types
.. code-block:: llvm
%c = add <vscale x 4 x i32> %a, %b
%f = add <4 x i32> %d, %e
2. RISC-V vector intrinsics, which mirror the `C intrinsics specification <https://github.com/riscv-non-isa/rvv-intrinsic-doc>`_
These come in unmasked variants:
.. code-block:: llvm
%c = call @llvm.riscv.vadd.nxv4i32.nxv4i32(
<vscale x 4 x i32> %passthru,
<vscale x 4 x i32> %a,
<vscale x 4 x i32> %b,
i64 %avl
)
As well as masked variants:
.. code-block:: llvm
%c = call @llvm.riscv.vadd.mask.nxv4i32.nxv4i32(
<vscale x 4 x i32> %passthru,
<vscale x 4 x i32> %a,
<vscale x 4 x i32> %b,
<vscale x 4 x i1> %mask,
i64 %avl,
i64 0 ; policy (must be an immediate)
)
Both allow setting the AVL as well as controlling the inactive/tail elements via the passthru operand, but the masked variant also provides operands for the mask and ``vta``/``vma`` policy bits.
The only valid types are scalable vector types.
3. :ref:`Vector predication (VP) intrinsics <int_vp>`
.. code-block:: llvm
%c = call @llvm.vp.add.nxv4i32(
<vscale x 4 x i32> %a,
<vscale x 4 x i32> %b,
<vscale x 4 x i1> %m
i32 %evl
)
Unlike RISC-V intrinsics, VP intrinsics are target agnostic so they can be emitted from other optimisation passes in the middle-end (like the loop vectorizer). They also support fixed-length vector types.
VP intrinsics also don't have passthru operands, but tail/mask undisturbed behaviour can be emulated by using the output in a ``@llvm.vp.merge``.
It will get lowered as a ``vmerge``, but will be merged back into the underlying instruction's mask via ``RISCVDAGToDAGISel::performCombineVMergeAndVOps``.
The different properties of the above representations are summarized below:
+----------------------+--------------+-----------------+----------+------------------+----------------------+-----------------+
| | AVL | Masking | Passthru | Scalable vectors | Fixed-length vectors | Target agnostic |
+======================+==============+=================+==========+==================+======================+=================+
| LLVM IR instructions | Always VLMAX | No | None | Yes | Yes | Yes |
+----------------------+--------------+-----------------+----------+------------------+----------------------+-----------------+
| RVV intrinsics | Yes | Yes | Yes | Yes | No | No |
+----------------------+--------------+-----------------+----------+------------------+----------------------+-----------------+
| VP intrinsics | Yes (EVL) | Yes | No | Yes | Yes | Yes |
+----------------------+--------------+-----------------+----------+------------------+----------------------+-----------------+
SelectionDAG lowering
=====================
For most regular **scalable** vector LLVM IR instructions, their corresponding SelectionDAG nodes are legal on RISC-V and don't require any custom lowering.
.. code-block::
t5: nxv4i32 = add t2, t4
RISC-V vector intrinsics also don't require any custom lowering.
.. code-block::
t12: nxv4i32 = llvm.riscv.vadd TargetConstant:i64<10056>, undef:nxv4i32, t2, t4, t6
Fixed-length vectors
--------------------
Because there are no fixed-length vector patterns, fixed-length vectors need to be custom lowered and performed in a scalable "container" type:
1. The fixed-length vector operands are inserted into scalable containers with ``insert_subvector`` nodes. The container type is chosen such that its minimum size will fit the fixed-length vector (see ``getContainerForFixedLengthVector``).
2. The operation is then performed on the container type via a **VL (vector length) node**. These are custom nodes defined in ``RISCVInstrInfoVVLPatterns.td`` that mirror target agnostic SelectionDAG nodes, as well as some RVV instructions. They contain an AVL operand, which is set to the number of elements in the fixed-length vector.
Some nodes also have a passthru or mask operand, which will usually be set to ``undef`` and all ones when lowering fixed-length vectors.
3. The result is put back into a fixed-length vector via ``extract_subvector``.
.. code-block::
t2: nxv2i32,ch = CopyFromReg t0, Register:nxv2i32 %0
t6: nxv2i32,ch = CopyFromReg t0, Register:nxv2i32 %1
t4: v4i32 = extract_subvector t2, Constant:i64<0>
t7: v4i32 = extract_subvector t6, Constant:i64<0>
t8: v4i32 = add t4, t7
// is custom lowered to:
t2: nxv2i32,ch = CopyFromReg t0, Register:nxv2i32 %0
t6: nxv2i32,ch = CopyFromReg t0, Register:nxv2i32 %1
t15: nxv2i1 = RISCVISD::VMSET_VL Constant:i64<4>
t16: nxv2i32 = RISCVISD::ADD_VL t2, t6, undef:nxv2i32, t15, Constant:i64<4>
t17: v4i32 = extract_subvector t16, Constant:i64<0>
VL nodes often have a passthru or mask operand, which are usually set to ``undef`` and all ones for fixed-length vectors.
The ``insert_subvector`` and ``extract_subvector`` nodes responsible for wrapping and unwrapping will get combined away, and eventually we will lower all fixed-length vector types to scalable. Note that fixed-length vectors at the interface of a function are passed in a scalable vector container.
.. note::
The only ``insert_subvector`` and ``extract_subvector`` nodes that make it through lowering are those that can be performed as an exact subregister insert or extract. This means that any fixed-length vector ``insert_subvector`` and ``extract_subvector`` nodes that aren't legalized must lie on a register group boundary, so the exact VLEN must be known at compile time (i.e., compiled with ``-mrvv-vector-bits=zvl`` or ``-mllvm -riscv-v-vector-bits-max=VLEN``, or have an exact ``vscale_range`` attribute).
Vector predication intrinsics
-----------------------------
VP intrinsics also get custom lowered via VL nodes.
.. code-block::
t12: nxv2i32 = vp_add t2, t4, t6, Constant:i64<8>
// is custom lowered to:
t18: nxv2i32 = RISCVISD::ADD_VL t2, t4, undef:nxv2i32, t6, Constant:i64<8>
The VP EVL and mask are used for the VL node's AVL and mask respectively, whilst the passthru is set to ``undef``.
Instruction selection
=====================
``vl`` and ``vtype`` need to be configured correctly, so we can't just directly select the underlying vector ``MachineInstr``. Instead pseudo instructions are selected, which carry the extra information needed to emit the necessary ``vsetvli``\s later.
.. code-block::
%c:vrm2 = PseudoVADD_VV_M2 %passthru:vrm2(tied-def 0), %a:vrm2, %b:vrm2, %vl:gpr, 5 /*sew*/, 3 /*policy*/
Each vector instruction has multiple pseudo instructions defined in ``RISCVInstrInfoVPseudos.td``.
There is a variant of each pseudo for each possible LMUL, as well as a masked variant. So a typical instruction like ``vadd.vv`` would have the following pseudos:
.. code-block::
%rd:vr = PseudoVADD_VV_MF8 %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_MF4 %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_MF2 %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_M1 %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, %avl:gpr, sew:imm, policy:imm
%rd:vrm2 = PseudoVADD_VV_M2 %passthru:vrm2(tied-def 0), %rs2:vrm2, %rs1:vrm2, %avl:gpr, sew:imm, policy:imm
%rd:vrm4 = PseudoVADD_VV_M4 %passthru:vrm4(tied-def 0), %rs2:vrm4, %rs1:vrm4, %avl:gpr, sew:imm, policy:imm
%rd:vrm8 = PseudoVADD_VV_M8 %passthru:vrm8(tied-def 0), %rs2:vrm8, %rs1:vrm8, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_MF8_MASK %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_MF4_MASK %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_MF2_MASK %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vr = PseudoVADD_VV_M1_MASK %passthru:vr(tied-def 0), %rs2:vr, %rs1:vr, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vrm2 = PseudoVADD_VV_M2_MASK %passthru:vrm2(tied-def 0), %rs2:vrm2, %%rs1:vrm2, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vrm4 = PseudoVADD_VV_M4_MASK %passthru:vrm4(tied-def 0), %rs2:vrm4, %rs1:vrm4, mask:$v0, %avl:gpr, sew:imm, policy:imm
%rd:vrm8 = PseudoVADD_VV_M8_MASK %passthru:vrm8(tied-def 0), %rs2:vrm8, %rs1:vrm8, mask:$v0, %avl:gpr, sew:imm, policy:imm
.. note::
Whilst the SEW can be encoded in an operand, we need to use separate pseudos for each LMUL since different register groups will require different register classes: see :ref:`rvv_register_allocation`.
Pseudos have operands for the AVL and SEW (encoded as a power of 2), as well as potentially the mask, policy or rounding mode if applicable.
The passthru operand is tied to the destination register which will determine the inactive/tail elements.
For scalable vectors that should use VLMAX, the AVL is set to a sentinel value of ``-1``.
There are patterns for target agnostic SelectionDAG nodes in ``RISCVInstrInfoVSDPatterns.td``, VL nodes in ``RISCVInstrInfoVVLPatterns.td`` and RVV intrinsics in ``RISCVInstrInfoVPseudos.td``.
Mask patterns
-------------
For masked pseudos the mask operand is copied to the physical ``$v0`` register during instruction selection with a glued ``CopyToReg`` node:
.. code-block::
t23: ch,glue = CopyToReg t0, Register:nxv4i1 $v0, t6
t25: nxv4i32 = PseudoVADD_VV_M2_MASK Register:nxv4i32 $noreg, t2, t4, Register:nxv4i1 $v0, TargetConstant:i64<8>, TargetConstant:i64<5>, TargetConstant:i64<1>, t23:1
The patterns in ``RISCVInstrInfoVVLPatterns.td`` only match masked pseudos to reduce the size of the match table, even if the node's mask is all ones and could be an unmasked pseudo.
``RISCVFoldMasks::convertToUnmasked`` will detect if the mask is all ones and convert it into its unmasked form.
.. code-block::
$v0 = PseudoVMSET_M_B16 -1, 32
%rd:vrm2 = PseudoVADD_VV_M2_MASK %passthru:vrm2(tied-def 0), %rs2:vrm2, %rs1:vrm2, $v0, %avl:gpr, sew:imm, policy:imm
// gets optimized to:
%rd:vrm2 = PseudoVADD_VV_M2 %passthru:vrm2(tied-def 0), %rs2:vrm2, %rs1:vrm2, %avl:gpr, sew:imm, policy:imm
.. note::
Any ``vmset.m`` can be treated as an all ones mask since the tail elements past AVL are ``undef`` and can be replaced with ones.
.. _rvv_register_allocation:
Register allocation
===================
Register allocation is split between vector and scalar registers, with vector allocation running first:
.. code-block::
$v8m2 = PseudoVADD_VV_M2 $v8m2(tied-def 0), $v8m2, $v10m2, %vl:gpr, 5, 3
.. note::
Register allocation is split so that :ref:`RISCVInsertVSETVLI` can run after vector register allocation, but before scalar register allocation. It needs to be run before scalar register allocation as it may need to create a new virtual register to set the AVL to VLMAX.
Performing ``RISCVInsertVSETVLI`` after vector register allocation imposes fewer constraints on the machine scheduler since it cannot schedule instructions past ``vsetvli``\s, and it allows us to emit further vector pseudos during spilling or constant rematerialization.
There are four register classes for vectors:
- ``VR`` for vector registers (``v0``, ``v1,``, ..., ``v32``). Used when :math:`\text{LMUL} \leq 1` and mask registers.
- ``VRM2`` for vector groups of length 2 i.e., :math:`\text{LMUL}=2` (``v0m2``, ``v2m2``, ..., ``v30m2``)
- ``VRM4`` for vector groups of length 4 i.e., :math:`\text{LMUL}=4` (``v0m4``, ``v4m4``, ..., ``v28m4``)
- ``VRM8`` for vector groups of length 8 i.e., :math:`\text{LMUL}=8` (``v0m8``, ``v8m8``, ..., ``v24m8``)
:math:`\text{LMUL} \lt 1` types and mask types do not benefit from having a dedicated class, so ``VR`` is used in their case.
Some instructions have a constraint that a register operand cannot be ``V0`` or overlap with ``V0``, so for these cases we also have ``VRNoV0`` variants.
.. _RISCVInsertVSETVLI:
RISCVInsertVSETVLI
==================
After vector registers are allocated, the ``RISCVInsertVSETVLI`` pass will insert the necessary ``vsetvli``\s for the pseudos.
.. code-block::
dead $x0 = PseudoVSETVLI %vl:gpr, 209, implicit-def $vl, implicit-def $vtype
$v8m2 = PseudoVADD_VV_M2 $v8m2(tied-def 0), $v8m2, $v10m2, $noreg, 5, implicit $vl, implicit $vtype
The physical ``$vl`` and ``$vtype`` registers are implicitly defined by the ``PseudoVSETVLI``, and are implicitly used by the ``PseudoVADD``.
The ``vtype`` operand (``209`` in this example) is encoded as per the specification via ``RISCVVType::encodeVTYPE``.
``RISCVInsertVSETVLI`` performs dataflow analysis to emit as few ``vsetvli``\s as possible. It will also try to minimize the number of ``vsetvli``\s that set VL, i.e., it will emit ``vsetvli x0, x0`` if only ``vtype`` needs changed but ``vl`` doesn't.
Pseudo expansion and printing
=============================
After scalar register allocation, the ``RISCVExpandPseudoInsts.cpp`` pass expands the ``PseudoVSETVLI`` instructions.
.. code-block::
dead $x0 = VSETVLI $x1, 209, implicit-def $vtype, implicit-def $vl
renamable $v8m2 = PseudoVADD_VV_M2 $v8m2(tied-def 0), $v8m2, $v10m2, $noreg, 5, implicit $vl, implicit $vtype
Note that the vector pseudo remains as it's needed to encode the register class for the LMUL. Its AVL and SEW operands are no longer used.
``RISCVAsmPrinter`` will then lower the pseudo instructions into real ``MCInst``\s.
.. code-block:: nasm
vsetvli a0, zero, e32, m2, ta, ma
vadd.vv v8, v8, v10
See also
========
- `[llvm-dev] [RFC] Code generation for RISC-V V-extension <https://lists.llvm.org/pipermail/llvm-dev/2020-October/145850.html>`_
- `2023 LLVM Dev Mtg - Vector codegen in the RISC-V backend <https://youtu.be/-ox8iJmbp0c?feature=shared>`_
- `2023 LLVM Dev Mtg - How to add an C intrinsic and code-gen it, using the RISC-V vector C intrinsics <https://youtu.be/t17O_bU1jks?feature=shared>`_
- `2021 LLVM Dev Mtg “Optimizing code for scalable vector architectures” <https://youtu.be/daWLCyhwrZ8?feature=shared>`_