llvm/mlir/examples/toy/Ch4/include/toy/Ops.td

//===- Ops.td - Toy dialect operation definitions ----------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the operations of the Toy dialect.
//
//===----------------------------------------------------------------------===//

#ifndef TOY_OPS
#define TOY_OPS

include "mlir/Interfaces/FunctionInterfaces.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/CallInterfaces.td"
include "mlir/Interfaces/CastInterfaces.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "toy/ShapeInferenceInterface.td"

// Provide a definition of the 'toy' dialect in the ODS framework so that we
// can define our operations.
def Toy_Dialect : Dialect {
  let name = "toy";
  let cppNamespace = "::mlir::toy";
}

// Base class for toy dialect operations. This operation inherits from the base
// `Op` class in OpBase.td, and provides:
//   * The parent dialect of the operation.
//   * The mnemonic for the operation, or the name without the dialect prefix.
//   * A list of traits for the operation.
class Toy_Op<string mnemonic, list<Trait> traits = []> :
    Op<Toy_Dialect, mnemonic, traits>;

//===----------------------------------------------------------------------===//
// Toy Operations
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//

// We define a toy operation by inheriting from our base 'Toy_Op' class above.
// Here we provide the mnemonic and a list of traits for the operation. The
// constant operation is marked as 'Pure' as it is a pure operation
// and may be removed if dead.
def ConstantOp : Toy_Op<"constant", [Pure]> {
  // Provide a summary and description for this operation. This can be used to
  // auto-generate documentation of the operations within our dialect.
  let summary = "constant";
  let description = [{
    Constant operation turns a literal into an SSA value. The data is attached
    to the operation as an attribute. For example:

    ```mlir
      %0 = toy.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]>
                        : tensor<2x3xf64>
    ```
  }];

  // The constant operation takes an attribute as the only input.
  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of TensorType.
  let results = (outs F64Tensor);

  // Indicate that the operation has a custom parser and printer method.
  let hasCustomAssemblyFormat = 1;

  // Add custom build methods for the constant operation. These method populates
  // the `state` that MLIR uses to create operations, i.e. these are used when
  // using `builder.create<ConstantOp>(...)`.
  let builders = [
    // Build a constant with a given constant tensor value.
    OpBuilder<(ins "DenseElementsAttr":$value), [{
      build($_builder, $_state, value.getType(), value);
    }]>,

    // Build a constant with a given constant floating-point value.
    OpBuilder<(ins "double":$value)>
  ];

  // Indicate that additional verification for this operation is necessary.
  let hasVerifier = 1;
}

//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//

def AddOp : Toy_Op<"add",
    [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
  let summary = "element-wise addition operation";
  let description = [{
    The "add" operation performs element-wise addition between two tensors.
    The shapes of the tensor operands are expected to match.
  }];

  let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);
  let results = (outs F64Tensor);

  // Indicate that the operation has a custom parser and printer method.
  let hasCustomAssemblyFormat = 1;

  // Allow building an AddOp with from the two input operands.
  let builders = [
    OpBuilder<(ins "Value":$lhs, "Value":$rhs)>
  ];
}

//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//

def CastOp : Toy_Op<"cast", [
     DeclareOpInterfaceMethods<CastOpInterface>,
     DeclareOpInterfaceMethods<ShapeInferenceOpInterface>,
     Pure,
     SameOperandsAndResultShape
  ]> {
  let summary = "shape cast operation";
  let description = [{
    The "cast" operation converts a tensor from one type to an equivalent type
    without changing any data elements. The source and destination types must
    both be tensor types with the same element type. If both are ranked, then
    shape is required to match. The operation is invalid if converting to a
    mismatching constant dimension.
  }];

  let arguments = (ins F64Tensor:$input);
  let results = (outs F64Tensor:$output);

  let assemblyFormat = "$input attr-dict `:` type($input) `to` type($output)";
}

//===----------------------------------------------------------------------===//
// FuncOp
//===----------------------------------------------------------------------===//

def FuncOp : Toy_Op<"func", [
    FunctionOpInterface, IsolatedFromAbove
  ]> {
  let summary = "user defined function operation";
  let description = [{
    The "toy.func" operation represents a user defined function. These are
    callable SSA-region operations that contain toy computations.

    Example:

    ```mlir
    toy.func @main() {
      %0 = toy.constant dense<5.500000e+00> : tensor<f64>
      %1 = toy.reshape(%0 : tensor<f64>) to tensor<2x2xf64>
      toy.print %1 : tensor<2x2xf64>
      toy.return
    }
    ```
  }];

  let arguments = (ins
    SymbolNameAttr:$sym_name,
    TypeAttrOf<FunctionType>:$function_type,
    OptionalAttr<DictArrayAttr>:$arg_attrs,
    OptionalAttr<DictArrayAttr>:$res_attrs
  );
  let regions = (region AnyRegion:$body);

  let builders = [OpBuilder<(ins
    "StringRef":$name, "FunctionType":$type,
    CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)
  >];

  let extraClassDeclaration = [{
    //===------------------------------------------------------------------===//
    // FunctionOpInterface Methods
    //===------------------------------------------------------------------===//

    /// Returns the argument types of this function.
    ArrayRef<Type> getArgumentTypes() { return getFunctionType().getInputs(); }

    /// Returns the result types of this function.
    ArrayRef<Type> getResultTypes() { return getFunctionType().getResults(); }

    Region *getCallableRegion() { return &getBody(); }
  }];

  let hasCustomAssemblyFormat = 1;
  let skipDefaultBuilders = 1;
}

//===----------------------------------------------------------------------===//
// GenericCallOp
//===----------------------------------------------------------------------===//

def GenericCallOp : Toy_Op<"generic_call",
    [DeclareOpInterfaceMethods<CallOpInterface>]> {
  let summary = "generic call operation";
  let description = [{
    Generic calls represent calls to a user defined function that needs to
    be specialized for the shape of its arguments. The callee name is attached
    as a symbol reference via an attribute. The arguments list must match the
    arguments expected by the callee. For example:

    ```mlir
     %4 = toy.generic_call @my_func(%1, %3)
           : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
    ```

    This is only valid if a function named "my_func" exists and takes two
    arguments.
  }];

  // The generic call operation takes a symbol reference attribute as the
  // callee, and inputs for the call.
  let arguments = (ins FlatSymbolRefAttr:$callee, Variadic<F64Tensor>:$inputs);

  // The generic call operation returns a single value of TensorType.
  let results = (outs F64Tensor);

  // Specialize assembly printing and parsing using a declarative format.
  let assemblyFormat = [{
    $callee `(` $inputs `)` attr-dict `:` functional-type($inputs, results)
  }];

  // Add custom build methods for the generic call operation.
  let builders = [
    OpBuilder<(ins "StringRef":$callee, "ArrayRef<Value>":$arguments)>
  ];
}

//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//

def MulOp : Toy_Op<"mul",
    [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
  let summary = "element-wise multiplication operation";
  let description = [{
    The "mul" operation performs element-wise multiplication between two
    tensors. The shapes of the tensor operands are expected to match.
  }];

  let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);
  let results = (outs F64Tensor);

  // Indicate that the operation has a custom parser and printer method.
  let hasCustomAssemblyFormat = 1;

  // Allow building a MulOp with from the two input operands.
  let builders = [
    OpBuilder<(ins "Value":$lhs, "Value":$rhs)>
  ];
}

//===----------------------------------------------------------------------===//
// PrintOp
//===----------------------------------------------------------------------===//

def PrintOp : Toy_Op<"print"> {
  let summary = "print operation";
  let description = [{
    The "print" builtin operation prints a given input tensor, and produces
    no results.
  }];

  // The print operation takes an input tensor to print.
  let arguments = (ins F64Tensor:$input);

  let assemblyFormat = "$input attr-dict `:` type($input)";
}

//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//

def ReshapeOp : Toy_Op<"reshape", [Pure]> {
  let summary = "tensor reshape operation";
  let description = [{
    Reshape operation is transforming its input tensor into a new tensor with
    the same number of elements but different shapes. For example:

    ```mlir
       %0 = toy.reshape (%arg1 : tensor<10xf64>) to tensor<5x2xf64>
    ```
  }];

  let arguments = (ins F64Tensor:$input);

  // We expect that the reshape operation returns a statically shaped tensor.
  let results = (outs StaticShapeTensorOf<[F64]>);

  let assemblyFormat = [{
    `(` $input `:` type($input) `)` attr-dict `to` type(results)
  }];

  // Enable registering canonicalization patterns with this operation.
  let hasCanonicalizer = 1;
}

//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//

def ReturnOp : Toy_Op<"return", [Pure, HasParent<"FuncOp">,
                                 Terminator]> {
  let summary = "return operation";
  let description = [{
    The "return" operation represents a return operation within a function.
    The operation takes an optional tensor operand and produces no results.
    The operand type must match the signature of the function that contains
    the operation. For example:

    ```mlir
      toy.func @foo() -> tensor<2xf64> {
        ...
        toy.return %0 : tensor<2xf64>
      }
    ```
  }];

  // The return operation takes an optional input operand to return. This
  // value must match the return type of the enclosing function.
  let arguments = (ins Variadic<F64Tensor>:$input);

  // The return operation only emits the input in the format if it is present.
  let assemblyFormat = "($input^ `:` type($input))? attr-dict ";

  // Allow building a ReturnOp with no return operand.
  let builders = [
    OpBuilder<(ins), [{ build($_builder, $_state, std::nullopt); }]>
  ];

  // Provide extra utility definitions on the c++ operation class definition.
  let extraClassDeclaration = [{
    bool hasOperand() { return getNumOperands() != 0; }
  }];

  // Indicate that additional verification for this operation is necessary.
  let hasVerifier = 1;
}

//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//

def TransposeOp : Toy_Op<"transpose",
    [Pure, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
  let summary = "transpose operation";

  let arguments = (ins F64Tensor:$input);
  let results = (outs F64Tensor);

  let assemblyFormat = [{
    `(` $input `:` type($input) `)` attr-dict `to` type(results)
  }];

  // Enable registering canonicalization patterns with this operation.
  let hasCanonicalizer = 1;

  // Allow building a TransposeOp with from the input operand.
  let builders = [
    OpBuilder<(ins "Value":$input)>
  ];

  // Indicate that additional verification for this operation is necessary.
  let hasVerifier = 1;
}

#endif // TOY_OPS