llvm/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir

// RUN: mlir-opt --transform-interpreter %s -split-input-file -verify-diagnostics | FileCheck %s

// Test One-Shot Bufferize.

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// CHECK-LABEL: func @test_function(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index

  // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
  // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
  // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
  // CHECK: memref.copy %[[A_memref]], %[[alloc]]
  // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
  // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

  // CHECK: return %[[res_tensor]]
  return %0 : tensor<?xf32>
}

// -----

// Emit linalg.copy instead of memref.copy.

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.bufferization.one_shot_bufferize %0 {memcpy_op = "linalg.copy"} : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// CHECK-LABEL: func @test_function(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
//   CHECK-NOT:   memref.copy
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index

  // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
  // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
  // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
  // CHECK: linalg.copy ins(%[[A_memref]] : memref<{{.*}}>) outs(%[[alloc]]
  // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
  // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

  // CHECK: return %[[res_tensor]]
  return %0 : tensor<?xf32>
}

// -----

// Test analysis of One-Shot Bufferize only.

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.bufferization.one_shot_bufferize %0
        {test_analysis_only = true} : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// CHECK-LABEL: func @test_function_analysis(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
func.func @test_function_analysis(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index
  // CHECK: vector.transfer_write
  // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]}
  // CHECK-SAME: tensor<?xf32>
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Test One-Shot Bufferize transform failure with an unknown op. This would be
// allowed with `allow_unknown_ops`.

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    // expected-error @+1 {{bufferization failed}}
    %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

func.func @test_unknown_op_failure() -> (tensor<?xf32>) {
  // expected-error @+1 {{op was not bufferized}}
  %0 = "test.dummy_op"() : () -> (tensor<?xf32>)
  return %0 : tensor<?xf32>
}

// -----

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
    // %arg1 is the module
    %0 = transform.bufferization.one_shot_bufferize %arg1 : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

module {
  // CHECK-LABEL: func @test_function(
  //  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
  func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
    %c0 = arith.constant 0 : index

    // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
    // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
    // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
    // CHECK: memref.copy %[[A_memref]], %[[alloc]]
    // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
    // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
    %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

    // CHECK: return %[[res_tensor]]
    return %0 : tensor<?xf32>
  }
}

// -----

// Test we use identity layout at function boundaries.

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) {
    %0 = transform.bufferization.one_shot_bufferize layout{IdentityLayoutMap} %arg1
      { bufferize_function_boundaries = true } : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// CHECK: func.func @matmul(
// CHECK-SAME:  %[[A:.*]]: memref<12x9xf32>,
// CHECK-SAME:  %[[B:.*]]: memref<9x6xf32>,
// CHECK-SAME:  %[[C:.*]]: memref<12x6xf32>) -> memref<12x6xf32> {
func.func @matmul(%A: tensor<12x9xf32>, %B: tensor<9x6xf32>, %C: tensor<12x6xf32>) -> tensor<12x6xf32> {
  // CHECK: linalg.matmul ins(%[[A]], %[[B]] : memref<12x9xf32>, memref<9x6xf32>) outs(%[[C]] : memref<12x6xf32>)
  %D = linalg.matmul ins(%A, %B: tensor<12x9xf32>, tensor<9x6xf32>) outs(%C: tensor<12x6xf32>) -> tensor<12x6xf32>
  // CHECK: return %[[C]] : memref<12x6xf32>
  return %D : tensor<12x6xf32>
}

// -----

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["tensor.empty"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.cast %0 : !transform.any_op to !transform.op<"tensor.empty">
    transform.bufferization.empty_tensor_to_alloc_tensor %1 : (!transform.op<"tensor.empty">) -> !transform.op<"bufferization.alloc_tensor">
    transform.yield
  }
}

// Expect `bufferization.empty_tensor_to_alloc_tensor` to replace the tensor.empty.
func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> {
  // CHECK: bufferization.alloc_tensor
  %0 = tensor.empty() : tensor<2x2xf32>
  return %0 : tensor<2x2xf32>
}

// -----

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.bufferization.eliminate_empty_tensors %0 : !transform.any_op
    transform.yield
  }
}

// CHECK-LABEL: func @empty_tensor_elimination(
//       CHECK:   tensor.extract_slice
//       CHECK:   linalg.fill
//       CHECK:   tensor.insert_slice
func.func @empty_tensor_elimination(
    %t: tensor<10xf32>, %f: f32) -> tensor<10xf32> {
  %0 = tensor.empty() : tensor<5xf32>
  %1 = linalg.fill ins(%f : f32) outs(%0 : tensor<5xf32>) -> tensor<5xf32>
  %2 = tensor.insert_slice %1 into %t [1][5][1]
      : tensor<5xf32> into tensor<10xf32>
  return %2 : tensor<10xf32>
}

// -----

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.bufferization.buffer_loop_hoisting %0 : !transform.any_op
    transform.yield
  }
}

// CHECK-LABEL: func @buffer_loop_hoisting(
//       CHECK:   memref.alloca
//       CHECK:   scf.for
//       CHECK:     memref.store
func.func @buffer_loop_hoisting(%lb: index, %ub: index, %step: index, %f: f32, %pos: index) {
  scf.for %iv = %lb to %ub step %step {
    %0 = memref.alloca() : memref<5xf32>
    memref.store %f, %0[%pos] : memref<5xf32>
  }
  return
}

// -----

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %alloc_tensor = transform.structured.match ops{["bufferization.alloc_tensor"]} in %arg1
      : (!transform.any_op) -> !transform.op<"bufferization.alloc_tensor">
    %2, %new = transform.structured.bufferize_to_allocation %alloc_tensor 
      {alloc_op = "memref.alloca"} 
        : !transform.op<"bufferization.alloc_tensor">
    transform.yield
  }
}

// Expect `bufferization.bufferize_to_allocation` to create an alloc.
//  CHECK-LABEL: func.func @empty_to_tensor_alloc()
func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> {
  // CHECK-NEXT: %[[alloca:.*]] = memref.alloca() : memref<2x2xf32>
  // CHECK-NEXT: %[[tensor:.*]] = bufferization.to_tensor %[[alloca]] restrict writable : memref<2x2xf32>
  // CHECK-NEXT: return %[[tensor]] : tensor<2x2xf32>
  %0 = bufferization.alloc_tensor() : tensor<2x2xf32>
  return %0 : tensor<2x2xf32>
}