llvm/mlir/test/Dialect/Transform/selective-targeting.mlir

// RUN:  mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s

// CHECK-LABEL: func.func @matmul_tensors_1(
func.func @matmul_tensors_1(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked for tiling only.
  // CHECK-COUNT-3: scf.for
  // CHECK-COUNT-3: tensor.extract_slice
  // CHECK: linalg.matmul
  // CHECK-SAME: -> tensor<4x4xf32>
  %0 = linalg.matmul { test.attrA }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @matmul_tensors_2(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked f
  // This operation is marked for tiling and vectorization.
  // CHECK-COUNT-3: scf.for
  // CHECK-COUNT-3: vector.transfer_read
  // CHECK:       vector.contract
  // CHECK-NOT:   linalg.matmul
  // CHECK:       vector.transfer_write
  %0 = linalg.matmul { test.attrA, test.attrC }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @matmul_tensors_3(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // This operation is marked for vectorization only.
  // CHECK-NOT: scf.for
  // CHECK-COUNT-3: vector.transfer_read
  // CHECK: vector.contract
  // CHECK-SAME: into vector<128x128xf32>
  // CHECK: vector.transfer_write
  %0 = linalg.matmul { test.attrC }
                      ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%root : !transform.any_op) {
    transform.with_pdl_patterns %root : !transform.any_op {
    ^bb0(%arg0: !transform.any_op):
      // Match matmul operations inside @matmul_tensors with test.attrA set.
      pdl.pattern @pdl_target_attrA : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      // Match matmul operations inside @matmul_tensors with test.attrC set.
      pdl.pattern @pdl_target_attrC : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrC" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      transform.sequence %arg0 : !transform.any_op failures(propagate) {
      ^bb1(%arg1: !transform.any_op):
        %0 = pdl_match @pdl_target_attrA in %arg1 : (!transform.any_op) -> !transform.any_op
        transform.structured.tile_using_for %0 tile_sizes [4, 4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
        %1 = pdl_match @pdl_target_attrC in %arg1 : (!transform.any_op) -> !transform.any_op
        %2 = get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
        transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op
      }
    }
    transform.yield
  }
}

// -----

// CHECK-LABEL: @vectorize_one
func.func @vectorize_one(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: vector.contract
  %0 = linalg.matmul {test.attrA}
                     ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

func.func @vectorize_none(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>,
  %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: linalg.matmul
  %0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  func.return %0 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%root : !transform.any_op) {
    transform.with_pdl_patterns %root : !transform.any_op {
    ^bb0(%arg0: !transform.any_op):
      pdl.pattern @pdl_target : benefit(1) {
        %args = operands
        %results = types
        %attr = attribute
        %0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pdl.range<type>)
        // TODO: we don't want this, but it is the required terminator for pdl.pattern
        rewrite %0 with "transform.dialect"
      }

      transform.sequence %arg0 : !transform.any_op failures(propagate) {
      ^bb1(%arg1: !transform.any_op):
        %0 = pdl_match @pdl_target in %arg1 : (!transform.any_op) -> !transform.any_op
        %1 = get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
        transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
      }
    }
    transform.yield
  }
}

// -----

// CHECK-LABEL: @vectorize_all
func.func @vectorize_all(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>,
  %arg3: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  // CHECK: vector.contract
  %0 = linalg.matmul {test.attrA}
                     ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  // CHECK: vector.contract
  %1 = linalg.matmul ins(%arg0, %0: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg3: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  return %1 : tensor<128x128xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg0: !transform.any_op) {
    transform.structured.vectorize_children_and_apply_patterns %arg0 : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}