// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @vectorize_1d_tensor_extract(%arg0: tensor<3xf32>, %arg1: tensor<4x3xi32>, %arg2: tensor<4x7x3x2xf32>) -> tensor<4x7x3x2xf32> {
%1 = linalg.generic {
indexing_maps = [#map0, #map1],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]
} ins(%arg1 : tensor<4x3xi32>) outs(%arg2 : tensor<4x7x3x2xf32>) {
^bb0(%arg3: i32, %arg4: f32):
%2 = arith.index_cast %arg3 : i32 to index
%3 = tensor.extract %arg0[%2] : tensor<3xf32>
linalg.yield %3 : f32
} -> tensor<4x7x3x2xf32>
return %1 : tensor<4x7x3x2xf32>
}
// CHECK-LABEL: func.func @vectorize_1d_tensor_extract
// CHECK-SAME: %[[ARG0:.*]]: tensor<3xf32>
// CHECK-SAME: %[[ARG1:.*]]: tensor<4x3xi32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[MASK:.*]] = arith.constant dense<true> : vector<4x7x3x2xi1>
// CHECK-DAG: %[[PASSTHRU:.*]] = arith.constant dense<0.000000e+00> : vector<4x7x3x2xf32>
// CHECK: %[[V0:.*]] = vector.transfer_read %[[ARG1]]
// CHECK: %[[CAST:.*]] = arith.index_cast %[[V0]]
// CHECK: %[[BROADCAST:.*]] = vector.broadcast %[[CAST]]
// CHECK: %[[INDICES:.*]] = vector.transpose %[[BROADCAST]]
// CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]]] [%[[INDICES]]], %[[MASK]], %[[PASSTHRU]]
// CHECK: vector.transfer_write %[[GATHER]]
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @vectorize_nd_tensor_extract_constant_idx(%arg0: tensor<3x3xf32>, %arg2: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> {
%c0 = arith.constant 1 : index
%c1 = arith.constant 2 : index
%2 = linalg.generic {
indexing_maps = [#map],
iterator_types = ["parallel", "parallel", "parallel"]
} outs(%arg2 : tensor<1x1x3xf32>) {
^bb0(%arg4: f32):
%7 = tensor.extract %arg0[%c0, %c1] : tensor<3x3xf32>
linalg.yield %7 : f32
} -> tensor<1x1x3xf32>
return %2 : tensor<1x1x3xf32>
}
// CHECK: #[[$MAP:.*]] = affine_map<(d0, d1) -> (0, 0, 0)>
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_constant_idx(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<3x3xf32>,
// CHECK-SAME: %[[ARG_1:.*]]: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> {
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[C0_f32_2:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]][%[[C1]], %[[C2]]], %[[C0_f32]] {in_bounds = [true, true, true], permutation_map = #[[$MAP]]} : tensor<3x3xf32>, vector<1x1x3xf32>
// CHECK: %[[C0_4:.*]] = arith.constant 0 : index
// CHECK: vector.transfer_write %[[READ]], %[[ARG_1]][%[[C0_4]], %[[C0_4]], %[[C0_4]]] : vector<1x1x3xf32>, tensor<1x1x3xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 { vectorize_nd_extract } : !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @vectorize_nd_tensor_extract_transfer_read_basic(
%arg0: tensor<3x3x3xf32>,
%arg1: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> {
%res = linalg.generic {
indexing_maps = [#map],
iterator_types = ["parallel", "parallel", "parallel"]
} outs(%arg1 : tensor<1x1x3xf32>) {
^bb0(%out: f32):
%1 = linalg.index 0 : index
%2 = linalg.index 1 : index
%3 = linalg.index 2 : index
%4 = tensor.extract %arg0[%1, %2, %3] : tensor<3x3x3xf32>
linalg.yield %4 : f32
} -> tensor<1x1x3xf32>
return %res : tensor<1x1x3xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_transfer_read_basic
// CHECK-SAME: %[[ARG0:.*]]: tensor<3x3x3xf32>
// CHECK-SAME: %[[ARG1:.*]]: tensor<1x1x3xf32>
// CHECK-DAG: %[[CST:.*]] = arith.constant dense<0> : vector<1x1x3xindex>
// CHECK-DAG: %[[C0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CST_0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[IDX_VEC0:.*]] = vector.shape_cast %[[CST]] : vector<1x1x3xindex> to vector<3xindex>
// CHECK: %[[IDX1:.*]] = vector.extractelement %[[IDX_VEC0]][%[[C0_i32]] : i32] : vector<3xindex>
// CHECK: %[[IDX_VEC:.*]] = vector.shape_cast %[[CST]] : vector<1x1x3xindex> to vector<3xindex>
// CHECK: %[[IDX2:.*]] = vector.extractelement %[[IDX_VEC]][%[[C0_i32]] : i32] : vector<3xindex>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[IDX1]], %[[IDX2]], %[[C0:.*]]], %[[CST_0]] {in_bounds = [true, true, true]} : tensor<3x3x3xf32>, vector<1x1x3xf32>
// CHECK: vector.transfer_write %[[READ]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32>
// Same as example above, but reading into a column tensor. Note that after the
// vectorizatoin, the `TransferOpReduceRank` will replace
// `vector.transfer_read` with `tensor.extract -> scalar`.
// TODO: Currently this fails to vectorise when the indices are non-constant.
func.func @vectorize_nd_tensor_extract_transfer_read_basic_column(
%input: tensor<3x3x3xf32>,
%output: tensor<3x1x1xf32>) -> tensor<3x1x1xf32> {
%c0 = arith.constant 0 : index
%res = linalg.generic {
indexing_maps = [#map],
iterator_types = ["parallel", "parallel", "parallel"]
} outs(%output : tensor<3x1x1xf32>) {
^bb0(%out: f32):
%5 = tensor.extract %input[%c0, %c0, %c0] : tensor<3x3x3xf32>
linalg.yield %5 : f32
} -> tensor<3x1x1xf32>
return %res : tensor<3x1x1xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_transfer_read_basic_column(
// CHECK-SAME: %[[INPUT:.*]]: tensor<3x3x3xf32>,
// CHECK-SAME: %[[OUTPUT:.*]]: tensor<3x1x1xf32>)
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[EXTRACT:.*]] = tensor.extract %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : tensor<3x3x3xf32>
// CHECK: %[[BCAST:.*]] = vector.broadcast %[[EXTRACT]] : f32 to vector<3x1x1xf32>
// CHECK: %[[RES:.*]] = vector.transfer_write %[[BCAST]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x1x1xf32>, tensor<3x1x1xf32>
// CHECK: return %[[RES]] : tensor<3x1x1xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16xf32>, %arg0: index, %arg2: index, %arg1: index, %arg4: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
%c79 = arith.constant 79 : index
%25 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
} outs(%extracted_slice : tensor<1x4xf32>) {
^bb0(%out: f32):
%26 = linalg.index 0 : index
%27 = arith.addi %arg0, %26 : index
%28 = arith.addi %27, %arg2 : index
%29 = linalg.index 1 : index
%30 = arith.addi %arg1, %29 : index
%31 = arith.addi %30, %arg4 : index
%extracted = tensor.extract %6[%28, %c79, %31] : tensor<45x80x16xf32>
linalg.yield %extracted : f32
} -> tensor<1x4xf32>
return %25 : tensor<1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_transfer_read_complex(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<45x80x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index, %[[VAL_4:.*]]: index,
// CHECK-SAME: %[[VAL_5:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[VAL_8:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[VAL_9:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_10:.*]] = arith.constant 79 : index
// CHECK: %[[VAL_11:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index
// CHECK: %[[VAL_12:.*]] = vector.broadcast %[[VAL_11]] : index to vector<1x4xindex>
// CHECK: %[[VAL_13:.*]] = vector.broadcast %[[VAL_3]] : index to vector<4xindex>
// CHECK: %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : vector<4xindex>
// CHECK: %[[VAL_15:.*]] = vector.broadcast %[[VAL_4]] : index to vector<4xindex>
// CHECK: %[[VAL_16:.*]] = arith.addi %[[VAL_14]], %[[VAL_15]] : vector<4xindex>
// CHECK: %[[VAL_17:.*]] = vector.shape_cast %[[VAL_12]] : vector<1x4xindex> to vector<4xindex>
// CHECK: %[[VAL_18:.*]] = vector.extractelement %[[VAL_17]]{{\[}}%[[VAL_7]] : i32] : vector<4xindex>
// CHECK: %[[VAL_19:.*]] = vector.extractelement %[[VAL_16]]{{\[}}%[[VAL_7]] : i32] : vector<4xindex>
// CHECK: %[[VAL_20:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_18]], %[[VAL_10]], %[[VAL_19]]], %[[VAL_8]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
// CHECK: %[[VAL_21:.*]] = vector.transfer_write %[[VAL_20]], %[[VAL_5]]{{\[}}%[[VAL_9]], %[[VAL_9]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_21]] : tensor<1x4xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
#map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @vectorize_nd_tensor_extract_index_from_tensor(%arg0: tensor<3x3xf32>, %arg1: tensor<4x3xi32>, %arg2: tensor<4x3xi32>, %arg3: tensor<4x7x2xf32>, %arg4: tensor<4x7x3x2xf32>) -> tensor<4x7x3x2xf32> {
%2 = linalg.generic {
indexing_maps = [#map0, #map0, #map1, #map2],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]
} ins(%arg1, %arg2, %arg3 : tensor<4x3xi32>, tensor<4x3xi32>, tensor<4x7x2xf32>) outs(%arg4 : tensor<4x7x3x2xf32>) {
^bb0(%arg5: i32, %arg6: i32, %arg7: f32, %arg8: f32):
%3 = arith.index_cast %arg5 : i32 to index
%4 = arith.index_cast %arg6 : i32 to index
%7 = tensor.extract %arg0[%3, %4] : tensor<3x3xf32>
linalg.yield %7 : f32
} -> tensor<4x7x3x2xf32>
return %2 : tensor<4x7x3x2xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_index_from_tensor
// CHECK-SAME: %[[ARG0:.*]]: tensor<3x3xf32>
// CHECK-SAME: %[[ARG1:arg1]]: tensor<4x3xi32>
// CHECK-SAME: %[[ARG2:arg2]]: tensor<4x3xi32>
// CHECK-SAME: %[[ARG3:.*]]: tensor<4x7x2xf32>
// CHECK-SAME: %[[ARG4:.*]]: tensor<4x7x3x2xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[CST:.*]] = arith.constant dense<3> : vector<7x2x4x3xindex>
// CHECK-DAG: %[[CST_1:.*]] = arith.constant dense<true> : vector<4x7x3x2xi1>
// CHECK-DAG: %[[PASSTHRU:.*]] = arith.constant dense<0.000000e+00> : vector<4x7x3x2xf32>
// CHECK: %[[V0:.*]] = vector.transfer_read %[[ARG1]][%[[C0]], %[[C0]]], %[[C0_i32]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[V1:.*]] = vector.transfer_read %[[ARG2]][%[[C0]], %[[C0]]], %[[C0_i32]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[CAST:.*]] = arith.index_cast %[[V0]] : vector<4x3xi32> to vector<4x3xindex>
// CHECK: %[[B1:.*]] = vector.broadcast %[[CAST]] : vector<4x3xindex> to vector<7x2x4x3xindex>
// CHECK: %[[CAST_1:.*]] = arith.index_cast %[[V1]] : vector<4x3xi32> to vector<4x3xindex>
// CHECK: %[[B2:.*]] = vector.broadcast %[[CAST_1]] : vector<4x3xindex> to vector<7x2x4x3xindex>
// CHECK: %[[MULI:.*]] = arith.muli %[[B1]], %[[CST]] : vector<7x2x4x3xindex>
// CHECK: %[[ADDI:.*]] = arith.addi %[[B2]], %[[MULI]] : vector<7x2x4x3xindex>
// CHECK: %[[T:.*]] = vector.transpose %[[ADDI]], [2, 0, 3, 1] : vector<7x2x4x3xindex> to vector<4x7x3x2xindex>
// CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]]] [%[[T]]], %[[CST_1]], %[[PASSTHRU]] : tensor<3x3xf32>, vector<4x7x3x2xindex>, vector<4x7x3x2xi1>, vector<4x7x3x2xf32> into vector<4x7x3x2xf32>
// CHECK: vector.transfer_write %[[GATHER]], %[[ARG4]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true]} : vector<4x7x3x2xf32>, tensor<4x7x3x2xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0) -> (d0)>
func.func @vectorize_nd_tensor_extract_contiguous_and_gather(%arg0: tensor<6xf32>, %arg1: tensor<5xi32>) -> tensor<5xf32> {
%c5 = arith.constant 5 : index
%c0 = arith.constant 0 : index
%0 = tensor.empty() : tensor<5xf32>
%1 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel"]} outs(%0 : tensor<5xf32>) {
^bb0(%out: f32):
%2 = linalg.index 0 : index
%extracted = tensor.extract %arg1[%2] : tensor<5xi32>
%3 = arith.index_cast %extracted : i32 to index
%4 = arith.maxsi %3, %c0 : index
%5 = arith.minsi %4, %c5 : index
%extracted_0 = tensor.extract %arg0[%5] : tensor<6xf32>
linalg.yield %extracted_0 : f32
} -> tensor<5xf32>
return %1 : tensor<5xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_contiguous_and_gather(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<6xf32>
// CHECK-SAME: %[[VAL_1:.*]]: tensor<5xi32>
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<0> : vector<5xindex>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<5> : vector<5xindex>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant dense<true> : vector<5xi1>
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant dense<0.000000e+00> : vector<5xf32>
// CHECK: %[[VAL_8:.*]] = tensor.empty() : tensor<5xf32>
// CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_2]]], %[[VAL_3]] {in_bounds = [true]} : tensor<5xi32>, vector<5xi32>
// CHECK: %[[VAL_10:.*]] = arith.index_cast %[[VAL_9]] : vector<5xi32> to vector<5xindex>
// CHECK: %[[VAL_11:.*]] = arith.maxsi %[[VAL_10]], %[[VAL_4]] : vector<5xindex>
// CHECK: %[[VAL_12:.*]] = arith.minsi %[[VAL_11]], %[[VAL_5]] : vector<5xindex>
// CHECK: %[[VAL_13:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_2]]] {{\[}}%[[VAL_12]]], %[[VAL_6]], %[[VAL_7]] : tensor<6xf32>, vector<5xindex>, vector<5xi1>, vector<5xf32> into vector<5xf32>
// CHECK: %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_8]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32>
// CHECK: return %[[VAL_14]] : tensor<5xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
// The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Contiguous load.
func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<80x16xf32>, %arg0: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
%c79 = arith.constant 79 : index
%1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
} outs(%extracted_slice : tensor<1x4xf32>) {
^bb0(%out: f32):
%2 = linalg.index 1 : index
%3 = affine.apply affine_map<(d0, d1) -> (d0 + d1)>(%2, %arg0)
%extracted = tensor.extract %6[%c79, %3] : tensor<80x16xf32>
linalg.yield %extracted : f32
} -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<80x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: index,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 79 : index
// CHECK: %[[VAL_8:.*]] = vector.broadcast %[[VAL_1]] : index to vector<4xindex>
// CHECK: %[[VAL_9:.*]] = arith.addi %[[VAL_8]], %[[VAL_3]] : vector<4xindex>
// CHECK: %[[VAL_10:.*]] = vector.extractelement %[[VAL_9]]{{\[}}%[[VAL_4]] : i32] : vector<4xindex>
// CHECK: %[[VAL_11:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_10]]], %[[VAL_5]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[VAL_12:.*]] = vector.transfer_write %[[VAL_11]], %[[VAL_2]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_12]] : tensor<1x4xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20xi32>, %input_2: tensor<257x24xf32>, %arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) -> tensor<1x1x4xf32> {
%c0 = arith.constant 0 : index
%c256 = arith.constant 256 : index
%output = tensor.empty() : tensor<1x1x4xf32>
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%output : tensor<1x1x4xf32>) {
^bb0(%out: f32):
%13 = linalg.index 0 : index
%14 = affine.apply affine_map<(d0, d1, d2) -> (d0 + d1 + d2)>(%arg0, %13, %arg2)
%15 = linalg.index 2 : index
%16 = linalg.index 1 : index
%17 = affine.apply affine_map<(d0, d1, d2, d3) -> (d0 + d1 * 24 + d2 + d3)>(%arg1, %16, %15, %arg3)
%extracted_0 = tensor.extract %input_1[%c0, %14] : tensor<1x20xi32>
%18 = arith.index_cast %extracted_0 : i32 to index
%19 = arith.maxsi %18, %c0 : index
%20 = arith.minsi %19, %c256 : index
%extracted_1 = tensor.extract %input_2[%20, %17] : tensor<257x24xf32>
linalg.yield %extracted_1 : f32
} -> tensor<1x1x4xf32>
return %1 : tensor<1x1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_tensor_extract(
// CHECK-SAME: %[[INPUT_1:.*]]: tensor<1x20xi32>,
// CHECK-SAME: %[[INPUT_2:.*]]: tensor<257x24xf32>,
// CHECK: %[[EXTRACTED_0_IDX_0:.*]] = arith.constant 0 : index
// CHECK: %[[EXTRACTED_0_IDX_1:.*]] = vector.extractelement %{{.*}}[%{{.*}} : i32] : vector<4xindex>
// First `tensor.extract` from the generic Op - loop invariant scalar load.
// CHECK: tensor.extract %[[INPUT_1]][%[[EXTRACTED_0_IDX_0]], %[[EXTRACTED_0_IDX_1]]] : tensor<1x20xi32>
// The following `tensor.extract` from the generic Op s a contiguous load (all Ops used
// for address calculation also satisfy the required conditions).
// CHECK: vector.transfer_read %[[INPUT_2]][%{{.*}}, %{{.*}}, %{{.*}} {in_bounds = [true, true]} : tensor<257x24xf32>, vector<1x4xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
// The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Gather load.
func.func @vectorize_nd_tensor_extract_with_affine_apply_gather(%6: tensor<80x16xf32>, %arg0: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
%c16 = arith.constant 16 : index
%1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
} outs(%extracted_slice : tensor<1x4xf32>) {
^bb0(%out: f32):
%2 = linalg.index 1 : index
%3 = affine.apply affine_map<(d0, d1) -> (d0 + d1)>(%2, %arg0)
%extracted = tensor.extract %6[%3, %c16] : tensor<80x16xf32>
linalg.yield %extracted : f32
} -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_affine_apply_gather(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<80x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: index,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<true> : vector<1x4xi1>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<0.000000e+00> : vector<1x4xf32>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant dense<16> : vector<1x4xindex>
// CHECK: %[[VAL_8:.*]] = vector.broadcast %[[VAL_1]] : index to vector<4xindex>
// CHECK: %[[VAL_9:.*]] = arith.addi %[[VAL_8]], %[[VAL_3]] : vector<4xindex>
// CHECK: %[[VAL_10:.*]] = vector.broadcast %[[VAL_9]] : vector<4xindex> to vector<1x4xindex>
// CHECK: %[[VAL_11:.*]] = arith.muli %[[VAL_10]], %[[VAL_7]] : vector<1x4xindex>
// CHECK: %[[VAL_12:.*]] = arith.addi %[[VAL_11]], %[[VAL_7]] : vector<1x4xindex>
// CHECK: %[[VAL_13:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {{\[}}%[[VAL_12]]], %[[VAL_4]], %[[VAL_5]] : tensor<80x16xf32>, vector<1x4xindex>, vector<1x4xi1>, vector<1x4xf32> into vector<1x4xf32>
// CHECK: %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_2]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_14]] : tensor<1x4xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
// Make sure that non-linear arithmetic operations (e.g. arith.maxsi) are allowed when calculating indices for load operations. Gather load.
func.func @vectorize_nd_tensor_extract_with_maxsi_gather(%arg0: tensor<80x16xf32>, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
%c79 = arith.constant 79 : index
%1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
} outs(%extracted_slice : tensor<1x4xf32>) {
^bb0(%out: f32):
%2 = linalg.index 1 : index
%3 = arith.maxsi %2, %c79 : index
%extracted = tensor.extract %arg0[%3, %2] : tensor<80x16xf32>
linalg.yield %extracted : f32
} -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_maxsi_gather(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<80x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<1264> : vector<1x4xindex>
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<true> : vector<1x4xi1>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<0.000000e+00> : vector<1x4xf32>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_7:.*]] = vector.broadcast %[[VAL_2]] : vector<4xindex> to vector<1x4xindex>
// CHECK: %[[VAL_8:.*]] = arith.addi %[[VAL_7]], %[[VAL_3]] : vector<1x4xindex>
// CHECK: %[[VAL_9:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {{\[}}%[[VAL_8]]], %[[VAL_4]], %[[VAL_5]] : tensor<80x16xf32>, vector<1x4xindex>, vector<1x4xi1>, vector<1x4xf32> into vector<1x4xf32>
// CHECK: %[[VAL_10:.*]] = vector.transfer_write %[[VAL_9]], %[[VAL_1]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_10]] : tensor<1x4xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
// Make sure that non-linear arithmetic operations (e.g. arith.maxsi) are allowed when calculating indices for load operations. Contiguous load.
func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(%arg0: tensor<80x16xf32>, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
%c16 = arith.constant 16 : index
%1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]
} outs(%extracted_slice : tensor<1x4xf32>) {
^bb0(%out: f32):
%2 = linalg.index 0 : index
%3 = linalg.index 1 : index
%4 = arith.maxsi %2, %c16 : index
%extracted = tensor.extract %arg0[%4, %3] : tensor<80x16xf32>
linalg.yield %extracted : f32
} -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<80x16xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant dense<16> : vector<1x4xindex>
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_6:.*]] = vector.shape_cast %[[VAL_2]] : vector<1x4xindex> to vector<4xindex>
// CHECK: %[[VAL_7:.*]] = vector.extractelement %[[VAL_6]]{{\[}}%[[VAL_3]] : i32] : vector<4xindex>
// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_4]]], %[[VAL_5]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_1]]{{\[}}%[[VAL_4]], %[[VAL_4]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_9]] : tensor<1x4xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
// The vectorizer assumes it's a gather load whenever using a block argument to calculate an index.
#map = affine_map<(d0) -> (d0)>
func.func @vectorize_nd_tensor_extract_block_arg(%arg0: tensor<5x6xf32>, %arg1: tensor<5xindex>) -> tensor<5xf32> {
%0 = tensor.empty() : tensor<5xf32>
%1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg1: tensor<5xindex>) outs(%0 : tensor<5xf32>) {
^bb0(%in: index, %out: f32):
%2 = linalg.index 0 : index
%extracted_0 = tensor.extract %arg0[%in, %2] : tensor<5x6xf32>
linalg.yield %extracted_0 : f32
} -> tensor<5xf32>
return %1 : tensor<5xf32>
}
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_block_arg(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5x6xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<5xindex>) -> tensor<5xf32> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3, 4]> : vector<5xindex>
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<true> : vector<5xi1>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<0.000000e+00> : vector<5xf32>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant dense<6> : vector<5xindex>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<5xf32>
// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_2]]], %[[VAL_2]] {in_bounds = [true]} : tensor<5xindex>, vector<5xindex>
// CHECK: %[[VAL_9:.*]] = arith.muli %[[VAL_8]], %[[VAL_6]] : vector<5xindex>
// CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_9]], %[[VAL_3]] : vector<5xindex>
// CHECK: %[[VAL_11:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_2]], %[[VAL_2]]] {{\[}}%[[VAL_10]]], %[[VAL_4]], %[[VAL_5]] : tensor<5x6xf32>, vector<5xindex>, vector<5xi1>, vector<5xf32> into vector<5xf32>
// CHECK: %[[VAL_12:.*]] = vector.transfer_write %[[VAL_11]], %[[VAL_7]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32>
// CHECK: return %[[VAL_12]] : tensor<5xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @vectorize_0d_tensor_extract(%arg0: tensor<f32>, %arg2: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> {
%2 = linalg.generic {
indexing_maps = [#map1],
iterator_types = ["parallel", "parallel", "parallel"]
} outs(%arg2 : tensor<1x1x3xf32>) {
^bb0(%arg4: f32):
%7 = tensor.extract %arg0[] : tensor<f32>
linalg.yield %7 : f32
} -> tensor<1x1x3xf32>
return %2 : tensor<1x1x3xf32>
}
// CHECK-LABEL: func.func @vectorize_0d_tensor_extract(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<f32>
// CHECK: %[[EXTRACT:.*]] = tensor.extract %[[ARG_0]][] : tensor<f32>
// CHECK: vector.broadcast %[[EXTRACT]] : f32 to vector<1x1x3xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0 + d1 + d2)>
func.func @vectorize_reverse_like_tensor_extract(%arg0: tensor<1x2x3xf32>, %arg1: tensor<1x1x3xf32>, %arg2: index) -> tensor<1x1x3xf32> {
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%0 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel"]} outs(%arg1 : tensor<1x1x3xf32>) {
^bb0(%out: f32):
%1 = linalg.index 1 : index
%2 = linalg.index 0 : index
%3 = affine.apply #map1(%1, %2, %arg2)
%4 = linalg.index 2 : index
%5 = arith.subi %c2, %4 : index
%extracted = tensor.extract %arg0[%c0, %3, %5] : tensor<1x2x3xf32>
linalg.yield %extracted : f32
} -> tensor<1x1x3xf32>
return %0 : tensor<1x1x3xf32>
}
// CHECK-LABEL: func.func @vectorize_reverse_like_tensor_extract
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]*]]
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z]*]]
// CHECK-SAME: %[[ARG2:[0-9a-zA-Z]*]]
// CHECK-DAG: %[[CST:.+]] = arith.constant dense<3> : vector<1x1x3xindex>
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[MASK:.*]] = arith.constant dense<true> : vector<1x1x3xi1>
// CHECK-DAG: %[[PASSTHRU:.*]] = arith.constant dense<0.000000e+00> : vector<1x1x3xf32>
// CHECK-DAG: %[[INIT_IDX:.+]] = arith.constant dense<[2, 1, 0]> : vector<3xindex>
// CHECK: %[[T0:.+]] = vector.broadcast %[[ARG2]] : index to vector<1x1x3xindex>
// CHECK: %[[T1:.+]] = arith.muli %[[T0]], %[[CST]] : vector<1x1x3xindex>
// CHECK: %[[T2:.+]] = vector.broadcast %[[INIT_IDX]]
// CHECK: %[[T3:.+]] = arith.addi %[[T2]], %[[T1]]
// CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]] [%[[T3]]], %[[MASK]], %[[PASSTHRU]]
// CHECK: vector.transfer_write %[[GATHER]]
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%cst = arith.constant dense<[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
%out = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) {
^bb0(%out: i32):
%8 = linalg.index 0 : index
%idx_0 = linalg.index 0 : index
%extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
linalg.yield %extracted : i32
} -> tensor<1x1x4xi32>
return %out:tensor<1x1x4xi32>
}
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)>
// CHECK-LABEL: func.func @vectorize_scalar_broadcast_column_tensor(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
// CHECK: %[[VAL_1:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_6:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_8:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32>
// CHECK: %[[VAL_10:.*]] = vector.step : vector<1xindex>
// CHECK: %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex>
// CHECK: %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
// CHECK: %[[VAL_13:.*]] = vector.step : vector<1xindex>
// CHECK: %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex>
// CHECK: %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
// CHECK: %[[VAL_16:.*]] = arith.constant dense<true> : vector<1x1x4xi1>
// CHECK: %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32>
// CHECK: %[[VAL_18:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_19:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex>
// CHECK: %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex>
// CHECK: %[[VAL_22:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32>
// CHECK: %[[VAL_24:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [1, 1, 4]{ vectorize_nd_extract } : !transform.any_op
transform.yield
}
}