// RUN: mlir-opt -transform-interpreter -split-input-file -verify-diagnostics -allow-unregistered-dialect %s | FileCheck %s
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#reduction_2d_trait = {
indexing_maps = [#map, #map1],
iterator_types = ["parallel", "reduction"]
}
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-LABEL: @reduction_2d_static
// CHECK-SAME: %[[T0:.+]]: tensor<3x7xf16>,
// CHECK-SAME: %[[T1:.+]]: tensor<3xf16>
func.func @reduction_2d_static(%t0: tensor<3x7xf16>, %t1: tensor<3xf16>) -> tensor<3xf16> {
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<3x2x4xf16>
// CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16)
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [4] into %[[EMPTY]] : tensor<3x7xf16> -> tensor<3x2x4xf16>
// CHECK-NOT: tensor.pack
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"]
// CHECK-SAME: ins(%{{.*}} : tensor<3x2x4xf16>)
// CHECK-SAME: outs(%{{.*}} : tensor<3xf16>)
%2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor<3x7xf16>) outs(%t1 : tensor<3xf16>) {
^bb0(%in: f16, %out: f16):
%3 = arith.addf %in, %out : f16
linalg.yield %3 : f16
} -> tensor<3xf16>
// CHECK-NOT: tensor.unpack
return %2 : tensor<3xf16>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.pack %0 packed_sizes = [0, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d1)>
#col_reduction_2d_trait = {
indexing_maps = [#map, #map1],
iterator_types = ["reduction", "parallel"]
}
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d1)>
// CHECK-LABEL: @col_reduction_2d_static
// CHECK-SAME: %[[T0:.+]]: tensor<7x3xf16>,
// CHECK-SAME: %[[T1:.+]]: tensor<3xf16>
func.func @col_reduction_2d_static(%t0: tensor<7x3xf16>, %t1: tensor<3xf16>) -> tensor<3xf16> {
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<3x2x4xf16>
// CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16)
// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0] inner_tiles = [4] into %[[EMPTY]] : tensor<7x3xf16> -> tensor<3x2x4xf16>
// CHECK-NOT: tensor.pack
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]]
// CHECK-SAME: iterator_types = ["reduction", "parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}} : tensor<3x2x4xf16>)
// CHECK-SAME: outs(%{{.*}} : tensor<3xf16>)
%2 = linalg.generic #col_reduction_2d_trait ins(%t0 : tensor<7x3xf16>) outs(%t1 : tensor<3xf16>) {
^bb0(%in: f16, %out: f16):
%3 = arith.addf %in, %out : f16
linalg.yield %3 : f16
} -> tensor<3xf16>
// CHECK-NOT: tensor.unpack
return %2 : tensor<3xf16>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.pack %0 packed_sizes = [4, 0]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
%pack = transform.get_producer_of_operand %1[0]
: (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.pack">)
%2, %pack_2, %empty_unpack_2 =
transform.structured.pack_transpose %pack with_compute_op(%1)
outer_perm = [1, 0]
: (!transform.op<"tensor.pack">, !transform.op<"linalg.generic">)
-> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.any_op)
transform.yield
}
}
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#reduction_2d_trait = {
indexing_maps = [#map, #map1],
iterator_types = ["parallel", "reduction"]
}
// CHECK-DAG: #[[$DIV4:.*]] = affine_map<()[s0] -> (s0 ceildiv 4)>
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-LABEL: @reduction_2d_dynamic
// CHECK-SAME: %[[T0:.+]]: tensor<?x?xf16>,
// CHECK-SAME: %[[T1:.+]]: tensor<?xf16>
func.func @reduction_2d_dynamic(%t0: tensor<?x?xf16>, %t1: tensor<?xf16>) -> tensor<?xf16> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[D0:.*]] = tensor.dim %[[T0]], %[[C0]] : tensor<?x?xf16>
// CHECK-DAG: %[[D1:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor<?x?xf16>
// CHECK: %[[D1B4:.*]] = affine.apply #[[$DIV4]]()[%[[D1]]]
// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[D0]], %[[D1B4]]) : tensor<?x?x4xf16>
// CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16)
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [4] into %[[EMPTY]] : tensor<?x?xf16> -> tensor<?x?x4xf16>
// CHECK-NOT: tensor.pack
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"]
// CHECK-SAME: ins(%{{.*}} : tensor<?x?x4xf16>)
// CHECK-SAME: outs(%{{.*}} : tensor<?xf16>)
%2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor<?x?xf16>) outs(%t1 : tensor<?xf16>) {
^bb0(%in: f16, %out: f16):
%3 = arith.addf %in, %out : f16
linalg.yield %3 : f16
} -> tensor<?xf16>
// CHECK-NOT: tensor.unpack
return %2 : tensor<?xf16>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.pack %0 packed_sizes = [0, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#reduction_2d_trait = {
indexing_maps = [#map, #map1],
iterator_types = ["parallel", "reduction"]
}
// CHECK-DAG: #[[$DIV3:.*]] = affine_map<()[s0] -> (s0 ceildiv 3)>
// CHECK-DAG: #[[$DIV4:.*]] = affine_map<()[s0] -> (s0 ceildiv 4)>
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
// CHECK-LABEL: @reduction_2d_dynamic
// CHECK-SAME: %[[T0:.+]]: tensor<?x?xf16>,
// CHECK-SAME: %[[T1:.+]]: tensor<?xf16>
func.func @reduction_2d_dynamic(%t0: tensor<?x?xf16>, %t1: tensor<?xf16>) -> tensor<?xf16> {
// CHECK: %[[PACKED_0:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16)
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [3, 4] into %{{.*}} : tensor<?x?xf16> -> tensor<?x?x3x4xf16>
// CHECK: %[[PACKED_1:.*]] = tensor.pack %[[T1]] padding_value(%{{.*}} : f16)
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [3] into %{{.*}} : tensor<?xf16> -> tensor<?x3xf16>
// CHECK-NOT: tensor.pack
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]]
// CHECK-SAME: iterator_types = ["parallel", "reduction", "parallel", "reduction"]
// CHECK-SAME: ins(%{{.*}} : tensor<?x?x3x4xf16>)
// CHECK-SAME: outs(%{{.*}} : tensor<?x3xf16>)
%2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor<?x?xf16>) outs(%t1 : tensor<?xf16>) {
^bb0(%in: f16, %out: f16):
%3 = arith.addf %in, %out : f16
linalg.yield %3 : f16
} -> tensor<?xf16>
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0] inner_tiles = [3] into %{{.*}} : tensor<?x3xf16> -> tensor<?xf16>
return %2 : tensor<?xf16>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.pack %0 packed_sizes = [3, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
// M N K m n k M K m k
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)>
// K N n k
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)>
// M N m n
// CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d4, d3)>
// CHECK-LABEL: @matmul
// CHECK-SAME: %[[A:[0-9a-zA-Z]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[B:[0-9a-zA-Z]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[C:[0-9a-zA-Z]+]]: tensor<?x?xf32>
func.func @matmul(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> tensor<?x?xf32> {
// CHECK: %[[PACK_A:.*]] = tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [2, 4]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x2x4xf32>
// CHECK: %[[PACK_B:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [3, 4]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x3x4xf32>
// CHECK: %[[PACK_C:.*]] = tensor.pack %{{.*}} outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [3, 2]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x3x2xf32>
// CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<?x?x2x4xf32>, tensor<?x?x3x4xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<?x?x3x2xf32>)
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
// CHECK: tensor.unpack %{{.*}} outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [3, 2]
// CHECK-SAME: : tensor<?x?x3x2xf32> -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// M N K
%1 = transform.structured.pack %0 packed_sizes = [2, 3, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
%unpack = transform.get_consumers_of_result %1[0]
: (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">)
%2, %pack_2, %unpack_2 =
transform.structured.pack_transpose %unpack with_compute_op(%1)
outer_perm = [1, 0] inner_perm = [1, 0]
: (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">)
-> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">)
transform.yield
}
}
// -----
// N F H W C KH KW f c
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d4, d2 + d5, d3 + d6, d8)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d1, d4, d5, d6, d7, d8)>
// CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1, d2, d3, d7)>
// CHECK-LABEL: @conv_2d_nchw_fchw
// CHECK-SAME: %[[INPUT:.+]]: tensor<14x512x28x28xf32>,
// CHECK-SAME: %[[FILTER:.+]]: tensor<1024x512x1x1xf32>
// CHECK-SAME: %[[INIT:.+]]: tensor<14x1024x28x28xf32>
func.func @conv_2d_nchw_fchw(%i: tensor<14x512x28x28xf32>, %f: tensor<1024x512x1x1xf32>,
%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> {
// CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1] inner_tiles = [8]
// CHECK-SAME: : tensor<14x512x28x28xf32> -> tensor<14x64x28x28x8xf32>
// CHECK: %[[PACK_FILTER:.*]] = tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [4, 8]
// CHECK-SAME: : tensor<1024x512x1x1xf32> -> tensor<256x64x1x1x4x8xf32>
// CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1] inner_tiles = [4]
// CHECK-SAME: : tensor<14x1024x28x28xf32> -> tensor<14x256x28x28x4xf32>
// CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<14x64x28x28x8xf32>, tensor<256x64x1x1x4x8xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<14x256x28x28x4xf32>)
%0 = linalg.conv_2d_nchw_fchw ins(%i, %f: tensor<14x512x28x28xf32>, tensor<1024x512x1x1xf32>)
outs(%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32>
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1] inner_tiles = [4]
// CHECK-SAME: : tensor<14x256x28x28x4xf32> -> tensor<14x1024x28x28xf32>
return %0: tensor<14x1024x28x28xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
// N F H W C KH KW
%1 = transform.structured.pack %0 packed_sizes = [0, 4, 0, 0, 8, 0, 0]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
// N H W F KH KW C f c
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1 + d4, d2 + d5, d6, d8)>
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d4, d5, d6, d3, d7, d8)>
// CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1, d2, d3, d7)>
// CHECK-LABEL: @conv_2d_nhwc_hwcf
// CHECK-SAME: %[[INPUT:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[FILTER:.+]]: tensor<1x?x?x?xf32>
// CHECK-SAME: %[[INIT:.+]]: tensor<?x1x?x?xf32>
func.func @conv_2d_nhwc_hwcf(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?x?x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
// CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3] inner_tiles = [6]
// CHECK-SAME: : tensor<?x1x?x?xf32> -> tensor<?x1x?x?x6xf32>
// CHECK: %[[PACK_FILTER:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3, 2] inner_tiles = [4, 6]
// CHECK-SAME: : tensor<1x?x?x?xf32> -> tensor<1x?x?x?x4x6xf32>
// CHECK: %[[PACK_OUTPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3] inner_tiles = [4]
// CHECK-SAME: : tensor<?x1x?x?xf32> -> tensor<?x1x?x?x4xf32>
// CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<?x1x?x?x6xf32>, tensor<1x?x?x?x4x6xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<?x1x?x?x4xf32>)
%0 = linalg.conv_2d_nhwc_hwcf
ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?x?x?xf32>)
outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [3] inner_tiles = [4]
// CHECK-SAME: : tensor<?x1x?x?x4xf32> -> tensor<?x1x?x?xf32>
return %0 : tensor<?x1x?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
// N H W F KH KW C
%1 = transform.structured.pack %0 packed_sizes = [0, 0, 0, 4, 0, 0, 6]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
// CHECK-DAG: affine_map<()[s0, s1] -> (s0 ceildiv s1)>
// M N K n k M K k
// CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)>
// K N n k
// CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d1, d3, d4)>
// M N n
// CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3)>
// CHECK-LABEL: @matmul_dynamic_pack_size
// CHECK-SAME: %[[A:[0-9a-zA-Z]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[B:[0-9a-zA-Z]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[C:[0-9a-zA-Z]+]]: tensor<?x?xf32>
func.func @matmul_dynamic_pack_size(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> tensor<?x?xf32> {
// CHECK: %[[TS:.*]] = "some_tile_size"() : () -> index
%sz = "some_tile_size"() : () -> (index)
// CHECK: %[[PACK_A:.*]] = tensor.pack %[[A]] {{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x?xf32>
// CHECK: %[[PACK_B:.*]] = tensor.pack %[[B]] {{.*}} inner_dims_pos = [1, 0] inner_tiles = [%[[TS]], %[[TS]]]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x?x?xf32>
// CHECK: %[[PACK_C:.*]] = tensor.pack %[[C]] {{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]]
// CHECK-SAME: : tensor<?x?xf32> -> tensor<?x?x?xf32>
// CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.*}} : tensor<?x?x?xf32>, tensor<?x?x?x?xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<?x?x?xf32>)
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
// CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]] into %[[C]]
// CHECK-SAME: : tensor<?x?x?xf32> -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%sz = transform.structured.match ops{["some_tile_size"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.pack %0 packed_sizes = [0, %sz, %sz]
: (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
func.func @conv_cant_pack(%i: tensor<14x512x28x28xf32>, %f: tensor<1024x512x1x1xf32>,
%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> {
%0 = linalg.conv_2d_nchw_fchw ins(%i, %f: tensor<14x512x28x28xf32>, tensor<1024x512x1x1xf32>)
outs(%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32>
return %0: tensor<14x1024x28x28xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
// N F H W C KH KW
// expected-error @below {{data tiling failed}}
%1 = transform.structured.pack %0 packed_sizes = [0, 0, 4, 0, 0, 0, 0]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
func.func @matmul(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
%1 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{requires target to map to exactly 1 LinalgOp (got 2)}}
%1 = transform.structured.pack %0 packed_sizes = [2, 3, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
func.func @matmul(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> tensor<?x?xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{requires number of packed sizes match the number of loops (2 vs 3)}}
%1 = transform.structured.pack %0 packed_sizes = [2, 3]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
transform.yield
}
}
// -----
func.func @no_single_packing_op(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) {
%0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32>
%1 = tensor.unpack %0 inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %source : tensor<4x16x32x16xf32> -> tensor<128x256xf32>
%2 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{requires target to map to exactly 1 packing op and 1 packed op (got 2 and 1)}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @no_single_pack_unpack(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) {
%0 = arith.constant 0 : index
%1 = tensor.empty() : tensor<f32>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["tensor.empty"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{requires target to map to a tensor.pack or tensor.unpack}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @no_linalg_target(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) {
%0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32>
%1 = arith.constant 0 : index
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{requires a LinalgOp target}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @no_single_use_by_linalg(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) {
%0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32>
%f0 = arith.constant 0.0 : f32
%1 = tensor.empty() : tensor<f32>
%2 = linalg.fill ins(%f0: f32) outs(%1 : tensor<f32>) -> tensor<f32>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{not a single use by the LinalgOp target}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @not_produced_by_linalg(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) {
%a = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32>
%b = tensor.unpack %a inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %source : tensor<4x16x32x16xf32> -> tensor<128x256xf32>
%f0 = arith.constant 0.0 : f32
%1 = tensor.empty() : tensor<f32>
%2 = linalg.fill ins(%f0: f32) outs(%1 : tensor<f32>) -> tensor<f32>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{not produced by the LinalgOp target}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @no_matching_pack(%source: tensor<16xf32>) {
%f0 = arith.constant 0.0 : f32
%1 = tensor.empty() : tensor<4x4xf32>
%2 = linalg.fill ins(%f0: f32) outs(%1 : tensor<4x4xf32>) -> tensor<4x4xf32>
%b = tensor.unpack %2 inner_dims_pos = [0] inner_tiles = [4] into %source : tensor<4x4xf32> -> tensor<16xf32>
return
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{could not find matching pack op}}
transform.structured.pack_transpose %0 with_compute_op(%1)
inner_perm = [0]
: (!transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @invalid_outer_perm(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> tensor<?x?xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.pack %0 packed_sizes = [2, 3, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
%unpack = transform.get_consumers_of_result %1[0]
: (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">)
%2, %pack_2, %unpack_2 =
// expected-error @below {{invalid outer_perm}}
transform.structured.pack_transpose %unpack with_compute_op(%1)
outer_perm = [1]
: (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">)
-> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">)
transform.yield
}
}
// -----
func.func @invalid_inner_perm(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
-> tensor<?x?xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>)
-> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.pack %0 packed_sizes = [2, 3, 4]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
%unpack = transform.get_consumers_of_result %1[0]
: (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">)
%2, %pack_2, %unpack_2 =
// expected-error @below {{invalid inner_perm}}
transform.structured.pack_transpose %unpack with_compute_op(%1)
inner_perm = [1]
: (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">)
-> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">)
transform.yield
}
}
// -----
func.func @no_padding_on_packs(%A: tensor<32x32xf32>, %B: tensor<32x32xf32>, %C: tensor<32x32xf32>)
-> tensor<32x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<32x32xf32>, tensor<32x32xf32>)
outs(%C: tensor<32x32xf32>)
-> tensor<32x32xf32>
return %0 : tensor<32x32xf32>
}
// CHECK-LABEL: no_padding_on_packs
// CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [4, 8]
// CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<8x4x4x8xf32>
// CHECK: tensor.pack %{{.+}} outer_dims_perm = [1, 0]
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 8]
// CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<4x4x8x8xf32>
// CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [4, 8]
// CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<8x4x4x8xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.pack %0 packed_sizes = [4, 8, 8]
: (!transform.any_op) -> (!transform.op<"linalg.generic">)
%pack = transform.get_producer_of_operand %1[1]
: (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.pack">)
%2, %pack_2, %empty_unpack_2 =
transform.structured.pack_transpose %pack with_compute_op(%1)
outer_perm = [1, 0] inner_perm = [1, 0]
: (!transform.op<"tensor.pack">, !transform.op<"linalg.generic">)
-> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.any_op)
transform.yield
}
}