// RUN: mlir-opt %s -transform-interpreter -cse -verify-diagnostics -split-input-file | FileCheck %s
// CHECK-LABEL: func.func @pack(
func.func @pack(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<17x2x16x16x32x8xf32>) -> tensor<17x2x16x16x32x8xf32> {
%cst_0 = arith.constant 0.0 : f32
// tensor.pack is lowered to tensor.pad + tensor.expand_shape + linalg.transpose
// CHECK: tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32>
// CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3], [4], [5]]
// CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<17x8x2x32x16x16xf32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{.*}} : tensor<17x8x2x32x16x16xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<17x2x16x16x32x8xf32>)
// CHECK-SAME: permutation = [0, 2, 4, 5, 3, 1]
%pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1
: tensor<129x47x16x16xf32> -> tensor<17x2x16x16x32x8xf32>
return %pack : tensor<17x2x16x16x32x8xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack(
func.func @pack(%arg0: tensor<128x8xf32>, %arg1: tensor<8x8x16x1xf32>) -> tensor<8x8x16x1xf32> {
// tensor.pack is lowered to tensor.pad + tensor.expand_shape + linalg.transpose
// CHECK: tensor.pad {{.*}} low[0, 0]
// CHECK: : tensor<128x8xf32> to tensor<128x8xf32>
// CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<128x8xf32> into tensor<8x16x8x1xf32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{.*}} : tensor<8x16x8x1xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<8x8x16x1xf32>)
// CHECK-SAME: permutation = [0, 2, 1, 3]
%pack = tensor.pack %arg0 inner_dims_pos = [0, 1] inner_tiles = [16, 1] into %arg1
: tensor<128x8xf32> -> tensor<8x8x16x1xf32>
return %pack : tensor<8x8x16x1xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_as_pad(
func.func @pack_as_pad(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x1x1x136x64x16x16xf32>) -> tensor<1x1x1x1x136x64x16x16xf32> {
%cst_0 = arith.constant 0.0 : f32
// tensor.pack is lowered to tensor.pad + tensor.insert_slice
// CHECK: %[[PAD:.*]] = tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x1x1x1x136x64x16x16xf32>
// CHECK: %[[RES:.*]] = tensor.insert_slice %[[PAD]] into %[[EMPTY]]
// offsets.
// CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0]
// sizes.
// CHECK-SAME: [1, 1, 1, 1, 136, 64, 16, 16]
// strides multipliers.
// CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1]
// CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x1x1x1x136x64x16x16xf32>
// CHECK: return %[[RES]]
%pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1
: tensor<129x47x16x16xf32> -> tensor<1x1x1x1x136x64x16x16xf32>
return %pack : tensor<1x1x1x1x136x64x16x16xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// Check that we don't lower the following pack as a pad.
// Although all the outer most dimensions in the resulting shape are 1s,
// some of the original dimensions are not part of the inner_dims_pos, hence
// some transpose needs to happen.
// CHECK-LABEL: func.func @pack_not_a_pad(
func.func @pack_not_a_pad(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x16x16x136x64xf32>) -> tensor<1x1x16x16x136x64xf32> {
%cst_0 = arith.constant 0.0 : f32
// CHECK: tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32>
// CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3], [4], [5]]
// CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x136x1x64x16x16xf32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{.*}} : tensor<1x136x1x64x16x16xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<1x1x16x16x136x64xf32>)
// CHECK-SAME: permutation = [0, 2, 4, 5, 1, 3]
%pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [0, 1] inner_tiles = [136, 64] into %arg1
: tensor<129x47x16x16xf32> -> tensor<1x1x16x16x136x64xf32>
return %pack : tensor<1x1x16x16x136x64xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @unpack(
func.func @unpack(%arg0: tensor<17x2x16x16x32x8xf32>, %arg1: tensor<129x47x16x16xf32>) -> tensor<129x47x16x16xf32> {
%cst_0 = arith.constant 0.0 : f32
// CHECK-SAME: %[[ARG0:.*]]: tensor<17x2x16x16x32x8xf32>, %[[ARG1:.*]]: tensor<129x47x16x16xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<17x8x2x32x16x16xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<17x2x16x16x32x8xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<17x8x2x32x16x16xf32>)
// CHECK-SAME: permutation = [0, 5, 1, 4, 2, 3]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3], [4], [5]]
// CHECK-SAME: : tensor<17x8x2x32x16x16xf32> into tensor<136x64x16x16xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0, 0] [129, 47, 16, 16] [1, 1, 1, 1]
// CHECK-SAME: : tensor<136x64x16x16xf32> to tensor<129x47x16x16xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<129x47x16x16xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<129x47x16x16xf32>)
%unpack = tensor.unpack %arg0 inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1
: tensor<17x2x16x16x32x8xf32> -> tensor<129x47x16x16xf32>
return %unpack : tensor<129x47x16x16xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @unpack_with_identity_outer_dims_perm(
func.func @unpack_with_identity_outer_dims_perm(%arg0: tensor<17x2x16x16x32x8xf32>, %arg1: tensor<129x47x16x16xf32>) -> tensor<129x47x16x16xf32> {
%cst_0 = arith.constant 0.0 : f32
// CHECK-SAME: %[[ARG0:.*]]: tensor<17x2x16x16x32x8xf32>, %[[ARG1:.*]]: tensor<129x47x16x16xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<17x8x2x32x16x16xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<17x2x16x16x32x8xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<17x8x2x32x16x16xf32>)
// CHECK-SAME: permutation = [0, 5, 1, 4, 2, 3]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3], [4], [5]]
// CHECK-SAME: : tensor<17x8x2x32x16x16xf32> into tensor<136x64x16x16xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0, 0] [129, 47, 16, 16] [1, 1, 1, 1]
// CHECK-SAME: : tensor<136x64x16x16xf32> to tensor<129x47x16x16xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<129x47x16x16xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<129x47x16x16xf32>)
%unpack = tensor.unpack %arg0 outer_dims_perm = [0, 1, 2, 3] inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1
: tensor<17x2x16x16x32x8xf32> -> tensor<129x47x16x16xf32>
return %unpack : tensor<129x47x16x16xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// When an unpack is a plain 'unpad', lower it to a simple extract_slice.
// CHECK-LABEL: func.func @unpack_as_pad(
func.func @unpack_as_pad(%arg0: tensor<1x1x1x1x136x64x16x16xf32>, %arg1: tensor<129x47x16x16xf32>) -> tensor<129x47x16x16xf32> {
%cst_0 = arith.constant 0.0 : f32
// CHECK-SAME: %[[ARG0:[^:]*]]: tensor<1x1x1x1x136x64x16x16xf32>
// CHECK: %[[RES:.*]] = tensor.extract_slice %[[ARG0]]
// offsets.
// CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0]
// sizes.
// CHECK-SAME: [1, 1, 1, 1, 129, 47, 16, 16]
// strides multiplers.
// CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1]
// CHECK-SAME: : tensor<1x1x1x1x136x64x16x16xf32> to tensor<129x47x16x16xf32>
%pack = tensor.unpack %arg0 inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1
: tensor<1x1x1x1x136x64x16x16xf32> -> tensor<129x47x16x16xf32>
return %pack : tensor<129x47x16x16xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_with_outer_dims_perm(
func.func @pack_with_outer_dims_perm(%src: tensor<100x200x128x256xi32>,
%dest: tensor<200x4x16x100x16x32xi32>)
-> tensor<200x4x16x100x16x32xi32> {
// CHECK: tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<100x200x128x256xi32> to tensor<100x200x128x256xi32>
// CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0], [1], [2, 3], [4, 5]]
// CHECK-SAME: : tensor<100x200x128x256xi32> into tensor<100x200x4x32x16x16xi32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{.*}} : tensor<100x200x4x32x16x16xi32>)
// CHECK-SAME: outs(%{{.*}} : tensor<200x4x16x100x16x32xi32>)
// CHECK-SAME: permutation = [1, 2, 4, 0, 5, 3]
%0 = tensor.pack %src
outer_dims_perm = [1, 2, 3, 0]
inner_dims_pos = [3, 2]
inner_tiles = [16, 32]
into %dest : tensor<100x200x128x256xi32> -> tensor<200x4x16x100x16x32xi32>
return %0 : tensor<200x4x16x100x16x32xi32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_with_pad(
func.func @pack_with_pad(%src: tensor<4225x12xf32>, %dest: tensor<265x16x16x1xf32>)
-> tensor<265x16x16x1xf32> {
// CHECK: tensor.pad {{.*}} low[0, 0]
// CHECK: : tensor<4225x12xf32> to tensor<4240x16xf32>
// CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<4240x16xf32> into tensor<265x16x16x1xf32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{[a-zA-Z0-9]*}} : tensor<265x16x16x1xf32>)
// CHECK-SAME: outs(%{{[a-zA-Z0-9]*}} : tensor<265x16x16x1xf32>)
// CHECK-SAME: permutation = [0, 2, 1, 3]
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.pack %src
padding_value(%cst : f32)
inner_dims_pos = [0, 1]
inner_tiles = [16, 1] into %dest
: tensor<4225x12xf32> -> tensor<265x16x16x1xf32>
return %0 : tensor<265x16x16x1xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_with_pad_and_outer_dims_perm(
func.func @pack_with_pad_and_outer_dims_perm(%src: tensor<100x200x127x255xi32>,
%dest: tensor<200x4x16x100x16x32xi32>)
-> tensor<200x4x16x100x16x32xi32> {
// CHECK: tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<100x200x127x255xi32> to tensor<100x200x128x256xi32>
// CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0], [1], [2, 3], [4, 5]]
// CHECK-SAME: : tensor<100x200x128x256xi32> into tensor<100x200x4x32x16x16xi32>
// CHECK: linalg.transpose
// CHECK-SAME: ins(%{{.*}} : tensor<100x200x4x32x16x16xi32>)
// CHECK-SAME: outs(%{{.*}} : tensor<200x4x16x100x16x32xi32>)
// CHECK-SAME: permutation = [1, 2, 4, 0, 5, 3]
%cst_0 = arith.constant 0 : i32
%0 = tensor.pack %src
padding_value(%cst_0 : i32)
outer_dims_perm = [1, 2, 3, 0]
inner_dims_pos = [3, 2]
inner_tiles = [16, 32]
into %dest : tensor<100x200x127x255xi32> -> tensor<200x4x16x100x16x32xi32>
return %0 : tensor<200x4x16x100x16x32xi32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> (s0 * 16 - s1)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1] -> (s0 * 32 - s1)>
// CHECK: func.func @dynamic_pack_pad_transpose_inner_and_outer_dims(
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
func.func @dynamic_pack_pad_transpose_inner_and_outer_dims(%source: tensor<?x?xf32>) -> tensor<?x?x16x32xf32> {
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C16:.+]] = arith.constant 16 : index
// CHECK-DAG: %[[C32:.+]] = arith.constant 32 : index
// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[SRC]], %[[C0]]
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[SRC]], %[[C1]]
// CHECK-DAG: %[[OUT_D0:.+]] = arith.ceildivui %[[D1]], %[[C16]] : index
// CHECK-DAG: %[[OUT_D1:.+]] = arith.ceildivui %[[D0]], %[[C32]] : index
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[OUT_D0]], %[[OUT_D1]]) : tensor<?x?x16x32xf32>
// CHECK-DAG: %[[DEST_D0:.+]] = tensor.dim %[[EMPTY]], %[[C0]]
// CHECK-DAG: %[[DEST_D1:.+]] = tensor.dim %[[EMPTY]], %[[C1]]
// CHECK-DAG: %[[H1:.+]] = affine.apply #[[MAP0]]()[%[[DEST_D0]], %[[D1]]]
// CHECK-DAG: %[[H0:.+]] = affine.apply #[[MAP1]]()[%[[DEST_D1]], %[[D0]]]
// CHECK: %[[PAD:.+]] = tensor.pad %[[SRC]] low[0, 0] high[%[[H0]], %[[H1]]]
// CHECK: : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[PAD]] {{\[}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<?x?xf32> into tensor<?x32x?x16xf32>
// CHECK: %[[TRANSP:.+]] = linalg.transpose
// CHECK-SAME: ins(%[[EXPAND]] : tensor<?x32x?x16xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<?x?x16x32xf32>)
// CHECK-SAME: permutation = [2, 0, 3, 1]
// CHECK: return %[[TRANSP]]
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %source, %c0 : tensor<?x?xf32>
%d1 = tensor.dim %source, %c1 : tensor<?x?xf32>
%padding_value = arith.constant 0.0 : f32
%c16 = arith.constant 16 : index
%c32 = arith.constant 32 : index
%tiled_d0 = arith.ceildivui %d0, %c32 : index
%tiled_d1 = arith.ceildivui %d1, %c16 : index
%init_pack = tensor.empty(%tiled_d1, %tiled_d0) : tensor<?x?x16x32xf32>
%pack = tensor.pack %source padding_value(%padding_value : f32)
outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %init_pack
: tensor<?x?xf32> -> tensor<?x?x16x32xf32>
return %pack : tensor<?x?x16x32xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_as_pad_with_outer_dims_perm(
func.func @pack_as_pad_with_outer_dims_perm(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x1x1x136x64x16x16xf32>) -> tensor<1x1x1x1x136x64x16x16xf32> {
%cst_0 = arith.constant 0.0 : f32
// tensor.pack is lowered to tensor.pad + tensor.insert_slice
// CHECK: %[[PAD:.*]] = tensor.pad {{.*}} low[0, 0, 0, 0]
// CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x1x1x1x136x64x16x16xf32>
// CHECK: %[[RES:.*]] = tensor.insert_slice %[[PAD]] into %[[EMPTY]]
// offsets.
// CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0]
// sizes.
// CHECK-SAME: [1, 1, 1, 1, 136, 64, 16, 16]
// strides multipliers.
// CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1]
// CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x1x1x1x136x64x16x16xf32>
// CHECK: return %[[RES]]
%pack = tensor.pack %arg0
padding_value(%cst_0 : f32)
outer_dims_perm = [1, 2, 3, 0]
inner_dims_pos = [0, 1, 2, 3]
inner_tiles = [136, 64, 16, 16]
into %arg1 : tensor<129x47x16x16xf32> -> tensor<1x1x1x1x136x64x16x16xf32>
return %pack : tensor<1x1x1x1x136x64x16x16xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// CHECK-LABEL: func.func @pack_as_pad_with_unit_dims(
// CHECK: %[[SRC:.+]]: tensor<3x1x1x1xf32>,
// CHECK: %[[OUT:.+]]: tensor<1x1x1x1x8x1xf32>)
func.func @pack_as_pad_with_unit_dims(%arg0: tensor<3x1x1x1xf32>, %arg1: tensor<1x1x1x1x8x1xf32>) -> (tensor<1x1x1x1x8x1xf32>) {
%zero = arith.constant 0.0 : f32
// CHECK: %[[PAD:.+]] = tensor.pad %[[SRC]] low[0, 0, 0, 0] high[5, 0, 0, 0] {
// CHECK: : tensor<3x1x1x1xf32> to tensor<8x1x1x1xf32>
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[PAD]] [{{.*}}[0, 1], [2, 3], [4], [5]]
// CHECK-SAME: tensor<8x1x1x1xf32> into tensor<1x8x1x1x1x1xf32>
// CHECK: %[[TRANSPOSED:.+]] = linalg.transpose
// CHECK-SAME: ins(%[[EXPAND]] : tensor<1x8x1x1x1x1xf32>)
// CHECK-SAME: outs(%[[OUT]] : tensor<1x1x1x1x8x1xf32>)
// CHECK-SAME: permutation = [0, 2, 4, 5, 1, 3]
// CHECK: return %[[TRANSPOSED]] : tensor<1x1x1x1x8x1xf32>
%pack = tensor.pack %arg0
padding_value(%zero : f32)
inner_dims_pos = [0, 1]
inner_tiles = [8, 1] into %arg1 : tensor<3x1x1x1xf32> -> tensor<1x1x1x1x8x1xf32>
return %pack : tensor<1x1x1x1x8x1xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
transform.yield
}
}
// -----
// Check that we can lower unpack with dynamic dimensions in the destination.
// CHECK-LABEL: func.func @unpack_with_dynamic_dest(
// CHECK-SAME: %[[ARG0:.*]]: tensor<32x2x49x16x16xf32>, %[[ARG1:.*]]: tensor<32x?x?xf32>)
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<32x2x16x49x16xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<32x2x49x16x16xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<32x2x16x49x16xf32>)
// CHECK-SAME: permutation = [0, 1, 3, 2, 4]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0], [1, 2], [3, 4]]
// CHECK-SAME: : tensor<32x2x16x49x16xf32> into tensor<32x32x784xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[DIM1:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<32x?x?xf32>
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[DIM2:.*]] = tensor.dim %[[ARG1]], %[[C2]] : tensor<32x?x?xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0] [32, %[[DIM1]], %[[DIM2]]] [1, 1, 1]
// CHECK-SAME: : tensor<32x32x784xf32> to tensor<32x?x?xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<32x?x?xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<32x?x?xf32>)
func.func @unpack_with_dynamic_dest(%arg0: tensor<32x2x49x16x16xf32>, %arg1: tensor<32x?x?xf32>) -> tensor<32x?x?xf32> {
%pack = tensor.unpack %arg0 inner_dims_pos = [1, 2] inner_tiles = [16, 16] into %arg1
: tensor<32x2x49x16x16xf32> -> tensor<32x?x?xf32>
return %pack : tensor<32x?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// Check that we can lower unpack with dynamic dimensions in the input and destination.
// CHECK-LABEL: func.func @unpack_with_dynamic_input_dest(
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?x8x16xf32>, %[[ARG1:.*]]: tensor<?x?xf32>)
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[DIM00:.*]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[DIM01:.*]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM00]], %[[DIM01]]) : tensor<?x8x?x16xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<?x?x8x16xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<?x8x?x16xf32>)
// CHECK-SAME: permutation = [0, 2, 1, 3]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<?x8x?x16xf32> into tensor<?x?xf32>
// CHECK: %[[DIM10:.*]] = tensor.dim %[[ARG1]], %[[C0]] : tensor<?x?xf32>
// CHECK: %[[DIM11:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<?x?xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0] [%[[DIM10]], %[[DIM11]]] [1, 1]
// CHECK-SAME: : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<?x?xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<?x?xf32>)
func.func @unpack_with_dynamic_input_dest(%arg0: tensor<?x?x8x16xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
%unpack = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 16] into %arg1 : tensor<?x?x8x16xf32> -> tensor<?x?xf32>
return %unpack : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// Check that we can lower unpack with dynamic dimensions in the input, destination, inner_tiles.
// CHECK-LABEL: func.func @unpack_fully_dynamic(
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?x?x?xf32>, %[[ARG1:.*]]: tensor<?x?xf32>, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index)
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[DIM00:.*]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[DIM01:.*]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[DIM02:.*]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK-DAG: %[[DIM03:.*]] = tensor.dim %[[ARG0]], %[[C3]]
// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM00]], %[[DIM02]], %[[DIM01]], %[[DIM03]]) : tensor<?x?x?x?xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<?x?x?x?xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<?x?x?x?xf32>)
// CHECK-SAME: permutation = [0, 2, 1, 3]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<?x?x?x?xf32> into tensor<?x?xf32>
// CHECK: %[[DIM10:.*]] = tensor.dim %[[ARG1]], %[[C0]] : tensor<?x?xf32>
// CHECK: %[[DIM11:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<?x?xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0] [%[[DIM10]], %[[DIM11]]] [1, 1]
// CHECK-SAME: : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<?x?xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<?x?xf32>)
func.func @unpack_fully_dynamic(%source: tensor<?x?x?x?xf32>, %dest: tensor<?x?xf32>, %tile_n : index, %tile_m : index) -> tensor<?x?xf32> {
%0 = tensor.unpack %source inner_dims_pos = [0, 1] inner_tiles = [%tile_n, %tile_m] into %dest : tensor<?x?x?x?xf32> -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// Check that we can lower unpack "as unpad" with dynamic dims.
// CHECK-LABEL: func.func @unpack_as_pad_dynamic(
// CHECK-SAME: %[[ARG0:.*]]: tensor<1x1x1x1x?x?x?x?xf32>, %[[ARG1:.*]]: tensor<?x?x?x?xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[DIM0:.*]] = tensor.dim %[[ARG1]], %[[C0]]
// CHECK-DAG: %[[DIM1:.*]] = tensor.dim %[[ARG1]], %[[C1]]
// CHECK-DAG: %[[DIM2:.*]] = tensor.dim %[[ARG1]], %[[C2]]
// CHECK-DAG: %[[DIM3:.*]] = tensor.dim %[[ARG1]], %[[C3]]
// CHECK: %[[RES:.*]] = tensor.extract_slice %[[ARG0]]
// offsets.
// CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0]
// sizes.
// CHECK-SAME: [1, 1, 1, 1, %[[DIM0]], %[[DIM1]], %[[DIM2]], %[[DIM3]]]
// strides multiplers.
// CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1]
// CHECK-SAME: : tensor<1x1x1x1x?x?x?x?xf32> to tensor<?x?x?x?xf32>
func.func @unpack_as_pad_dynamic(%arg0: tensor<1x1x1x1x?x?x?x?xf32>, %arg1: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
%pack = tensor.unpack %arg0 inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1
: tensor<1x1x1x1x?x?x?x?xf32> -> tensor<?x?x?x?xf32>
return %pack : tensor<?x?x?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}
// -----
// CHECK-LABEL: @unpack_with_outer_dims_perm
// CHECK-SAME: %[[ARG0:.*]]: tensor<32x64xf32>, %[[ARG1:.*]]: tensor<2x4x32x8xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<4x8x2x32xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG1]] : tensor<2x4x32x8xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<4x8x2x32xf32>)
// CHECK-SAME: permutation = [1, 3, 0, 2]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3]]
// CHECK-SAME: : tensor<4x8x2x32xf32> into tensor<32x64xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0] [32, 64] [1, 1]
// CHECK-SAME: : tensor<32x64xf32> to tensor<32x64xf32>
// CHECK: linalg.copy ins(%[[SLICE]]
// CHECK-SAME: : tensor<32x64xf32>) outs(%[[ARG0]] : tensor<32x64xf32>) -> tensor<32x64xf32>
func.func @unpack_with_outer_dims_perm(%arg0: tensor<32x64xf32>, %arg1: tensor<2x4x32x8xf32>) -> tensor<32x64xf32> {
%unpack = tensor.unpack %arg1 outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg0 : tensor<2x4x32x8xf32> -> tensor<32x64xf32>
return %unpack : tensor<32x64xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
}