llvm/mlir/test/Dialect/Tosa/ops.mlir

// RUN: mlir-opt %s | mlir-opt | FileCheck %s
// RUN: mlir-opt %s --mlir-print-op-generic | mlir-opt | FileCheck %s


// -----
// CHECK-LABEL: argmax
func.func @test_argmax(%arg0: tensor<14x19xf32>) -> tensor<14xi32> {
  %0 = tosa.argmax %arg0 {axis = 1 : i32} : (tensor<14x19xf32>) -> tensor<14xi32>
  return %0 : tensor<14xi32>
}

// -----
// CHECK-LABEL: avg_pool2d_f32
func.func @test_avg_pool2d_f32(%arg0: tensor<1x7x7x9xf32>) -> tensor<1x7x7x9xf32> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = f32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9xf32>) -> tensor<1x7x7x9xf32>
  return %0 : tensor<1x7x7x9xf32>
}

// -----
// CHECK-LABEL: avg_pool2d_f16
func.func @test_avg_pool2d_f16(%arg0: tensor<1x7x7x9xf16>) -> tensor<1x7x7x9xf16> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = f16, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9xf16>) -> tensor<1x7x7x9xf16>
  return %0 : tensor<1x7x7x9xf16>
}

// -----
// CHECK-LABEL: avg_pool2d_f16_accumf32
func.func @test_avg_pool2d_f16_accumf32(%arg0: tensor<1x7x7x9xf16>) -> tensor<1x7x7x9xf16> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = f32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9xf16>) -> tensor<1x7x7x9xf16>
  return %0 : tensor<1x7x7x9xf16>
}

// -----
// CHECK-LABEL: avg_pool2d_i8
func.func @test_avg_pool2d_i8(%arg0: tensor<1x7x7x9xi8>) -> tensor<1x7x7x9xi8> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = i32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9xi8>) -> tensor<1x7x7x9xi8>
  return %0 : tensor<1x7x7x9xi8>
}

// -----
// CHECK-LABEL: avg_pool2d_i16
func.func @test_avg_pool2d_i16(%arg0: tensor<1x7x7x9xi16>) -> tensor<1x7x7x9xi16> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = i32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9xi16>) -> tensor<1x7x7x9xi16>
  return %0 : tensor<1x7x7x9xi16>
}

// -----
// CHECK-LABEL: avg_pool2d_q8
func.func @test_avg_pool2d_q8(%arg0: tensor<1x7x7x9x!quant.uniform<i8:f32, 0.01>>) -> tensor<1x7x7x9x!quant.uniform<i8:f32, 0.01>> {
  %0 = tosa.avg_pool2d %arg0 {acc_type = i32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} : (tensor<1x7x7x9x!quant.uniform<i8:f32, 0.01>>) -> tensor<1x7x7x9x!quant.uniform<i8:f32, 0.01>>
  return %0 : tensor<1x7x7x9x!quant.uniform<i8:f32, 0.01>>
}

// -----
// CHECK-LABEL: conv2d
func.func @test_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>) -> tensor<1x4x4x8xf32> {
  %0 = tosa.conv2d %arg0, %arg1, %arg2 {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true} : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
  return %0 : tensor<1x4x4x8xf32>
}

// -----
// CHECK-LABEL: conv2d_q8xi4
func.func @test_conv2d_q8xi4(%arg0: tensor<1x11x11x3xi8>) -> tensor<1x1x1x3xi8> {
  %0 = "tosa.const"() {value = dense<0> : tensor<3x11x11x3xi4>} : () -> tensor<3x11x11x3xi4>
  %1 = "tosa.const"() {value = dense<[12, 23, 55]> : tensor<3xi32>} : () -> tensor<3xi32>
  %2 = "tosa.conv2d"(%arg0, %0, %1) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, quantization_info = #tosa.conv_quant<input_zp = 0, weight_zp = 0>, stride = array<i64: 1, 1>} : (tensor<1x11x11x3xi8>, tensor<3x11x11x3xi4>, tensor<3xi32>) -> tensor<1x1x1x3xi32>
  %3 = "tosa.rescale"(%2) {double_round = true, input_zp = 0 : i32, multiplier = array<i32: 2026291432, 1079222024, 1693132724>, output_zp = 27 : i32, per_channel = true, scale32 = true, shift = array<i8: 37, 36, 37>} : (tensor<1x1x1x3xi32>) -> tensor<1x1x1x3xi8>
  return %3 : tensor<1x1x1x3xi8>
}

// -----
// CHECK-LABEL: conv3d
func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<34xf32>) -> tensor<1x4x8x21x34xf32> {
  %0 = tosa.conv3d %arg0, %arg1, %arg2 {dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<34xf32>) -> tensor<1x4x8x21x34xf32>
  return %0 : tensor<1x4x8x21x34xf32>
}

// -----
// CHECK-LABEL: conv3d_with_local_bound
func.func @test_conv3d_with_local_bound(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<34xf32>) -> tensor<1x4x8x21x34xf32> {
  %0 = tosa.conv3d %arg0, %arg1, %arg2 {dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, local_bound = true} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<34xf32>) -> tensor<1x4x8x21x34xf32>
  return %0 : tensor<1x4x8x21x34xf32>
}

// -----
// CHECK-LABEL: depthwise_conv2d
func.func @test_depthwise_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x4x2xf32>, %arg2: tensor<8xf32>) -> tensor<1x4x4x8xf32> {
  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2 {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x4x4x4xf32>, tensor<1x1x4x2xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
  return %0 : tensor<1x4x4x8xf32>
}

// -----
// CHECK-LABEL: depthwise_conv2d_with_local_bound
func.func @test_depthwise_conv2d_with_local_bound(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x4x2xf32>, %arg2: tensor<8xf32>) -> tensor<1x4x4x8xf32> {
  %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2 {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true} : (tensor<1x4x4x4xf32>, tensor<1x1x4x2xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
  return %0 : tensor<1x4x4x8xf32>
}

// -----
// CHECK-LABEL: fft2d
func.func @test_fft2d(%arg0: tensor<1x4x8xf32>, %arg1: tensor<1x4x8xf32>) -> (tensor<1x4x8xf32>, tensor<1x4x8xf32>) {
  %0, %1 = tosa.fft2d %arg0, %arg1 {inverse = false} : (tensor<1x4x8xf32>, tensor<1x4x8xf32>) -> (tensor<1x4x8xf32>, tensor<1x4x8xf32>)
  return %0, %1 : tensor<1x4x8xf32>, tensor<1x4x8xf32>
}

// -----
// CHECK-LABEL: fft2d_with_local_bound
func.func @test_fft2d_with_local_bound(%arg0: tensor<1x4x8xf32>, %arg1: tensor<1x4x8xf32>) -> (tensor<1x4x8xf32>, tensor<1x4x8xf32>) {
  %0, %1 = tosa.fft2d %arg0, %arg1 {inverse = false, local_bound = true} : (tensor<1x4x8xf32>, tensor<1x4x8xf32>) -> (tensor<1x4x8xf32>, tensor<1x4x8xf32>)
  return %0, %1 : tensor<1x4x8xf32>, tensor<1x4x8xf32>
}

// -----
// CHECK-LABEL: fully_connected
func.func @test_fully_connected(%arg0: tensor<14x19xf32>, %arg1: tensor<19x28xf32>, %arg2: tensor<28xf32>) -> tensor<14x28xf32> {
  %0 = tosa.fully_connected %arg0, %arg1, %arg2 : (tensor<14x19xf32>, tensor<19x28xf32>, tensor<28xf32>) -> tensor<14x28xf32>
  return %0 : tensor<14x28xf32>
}

// -----
// CHECK-LABEL: test_matmul
func.func @test_matmul(%arg0: tensor<1x14x19xf32>, %arg1: tensor<1x19x28xf32>) -> tensor<1x14x28xf32> {
  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x14x19xf32>, tensor<1x19x28xf32>) -> tensor<1x14x28xf32>
  return %0 : tensor<1x14x28xf32>
}

// -----
// CHECK-LABEL: max_pool2d_f32
func.func @test_max_pool2d_f32(%arg0: tensor<1x32x32x8xf32>) -> tensor<1x32x32x8xf32> {
  %0 = tosa.max_pool2d %arg0 {kernel = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xf32>) -> tensor<1x32x32x8xf32>
  return %0 : tensor<1x32x32x8xf32>
}

// -----
// CHECK-LABEL: max_pool2d_bf16
func.func @test_max_pool2d_bf16(%arg0: tensor<1x32x32x8xbf16>) -> tensor<1x32x32x8xbf16> {
  %0 = tosa.max_pool2d %arg0 {kernel = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xbf16>) -> tensor<1x32x32x8xbf16>
  return %0 : tensor<1x32x32x8xbf16>
}

// -----
// CHECK-LABEL: max_pool2d_f16
func.func @test_max_pool2d_f16(%arg0: tensor<1x32x32x8xf16>) -> tensor<1x32x32x8xf16> {
  %0 = tosa.max_pool2d %arg0 {kernel = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xf16>) -> tensor<1x32x32x8xf16>
  return %0 : tensor<1x32x32x8xf16>
}

// -----
// CHECK-LABEL: rfft2d
func.func @test_rfft2d(%arg0: tensor<13x8x16xf32>) -> (tensor<13x8x9xf32>, tensor<13x8x9xf32>) {
  %0, %1 = tosa.rfft2d %arg0 : (tensor<13x8x16xf32>) -> (tensor<13x8x9xf32>, tensor<13x8x9xf32>)
  return %0, %1 : tensor<13x8x9xf32>, tensor<13x8x9xf32>
}

// -----
// CHECK-LABEL: rfft2d_with_local_bound
func.func @test_rfft2d_with_local_bound(%arg0: tensor<13x8x16xf32>) -> (tensor<13x8x9xf32>, tensor<13x8x9xf32>) {
  %0, %1 = tosa.rfft2d %arg0 {local_bound = true} : (tensor<13x8x16xf32>) -> (tensor<13x8x9xf32>, tensor<13x8x9xf32>)
  return %0, %1 : tensor<13x8x9xf32>, tensor<13x8x9xf32>
}

// -----
// CHECK-LABEL: transpose_conv2d
func.func @test_transpose_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
  %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2 {out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xf32>, tensor<16x1x1x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
  return %0 : tensor<1x32x32x16xf32>
}

// -----
// CHECK-LABEL: transpose_conv2d_with_local_bound
func.func @test_transpose_conv2d_with_local_bound(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
  %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2 {out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>, local_bound = false} : (tensor<1x32x32x8xf32>, tensor<16x1x1x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
  return %0 : tensor<1x32x32x16xf32>
}

// -----
// CHECK-LABEL: clamp
func.func @test_clamp(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.clamp %arg0 {min_fp = 0.0 : f32, max_fp = 1.0: f32, min_int = 0 : i64, max_int = 1 : i64} : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: clamp_f16
func.func @test_clamp_f16(%arg0: tensor<13x21x3xf16>) -> tensor<13x21x3xf16> {
  %0 = tosa.clamp %arg0 {min_fp = 0.0 : f16, max_fp = 1.0: f16, min_int = 0 : i64, max_int = 1 : i64} : (tensor<13x21x3xf16>) -> tensor<13x21x3xf16>
  return %0 : tensor<13x21x3xf16>
}

// -----
// CHECK-LABEL: clamp_bf16
func.func @test_clamp_bf16(%arg0: tensor<13x21x3xbf16>) -> tensor<13x21x3xbf16> {
  %0 = tosa.clamp %arg0 {min_fp = 0.0 : bf16, max_fp = 1.0: bf16, min_int = 0 : i64, max_int = 1 : i64} : (tensor<13x21x3xbf16>) -> tensor<13x21x3xbf16>
  return %0 : tensor<13x21x3xbf16>
}

// -----
// CHECK-LABEL: clamp_quantized
func.func @test_clamp_quantized(%arg0: tensor<13x21x3x!quant.uniform<i8:f32, 1.000000e-01:-127>>) -> tensor<13x21x3x!quant.uniform<i8:f32, 1.000000e-01:-127>> {
  %0 = tosa.clamp %arg0 {min_fp = 0.0 : f32, max_fp = 1.0: f32, min_int = 0 : i64, max_int = 1 : i64} : (tensor<13x21x3x!quant.uniform<i8:f32, 1.000000e-01:-127>>) -> tensor<13x21x3x!quant.uniform<i8:f32, 1.000000e-01:-127>>
  return %0 : tensor<13x21x3x!quant.uniform<i8:f32, 1.000000e-01:-127>>
}

// -----
// CHECK-LABEL: sigmoid
func.func @test_sigmoid(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.sigmoid %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: tanh
func.func @test_tanh(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.tanh %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}
// -----
// CHECK-LABEL: erf
func.func @test_erf(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.erf %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: add
func.func @test_add(%arg0: tensor<13x21x1xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.add %arg0, %arg1 : (tensor<13x21x1xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: arithmetic_right_shift
func.func @test_arithmetic_right_shift(%arg0: tensor<13x21x1xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.arithmetic_right_shift %arg0, %arg1 {round = false} : (tensor<13x21x1xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: bitwise_and
func.func @test_bitwise_and(%arg0: tensor<13x21x3xi32>, %arg1: tensor<13x21x1xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.bitwise_and %arg0, %arg1 : (tensor<13x21x3xi32>, tensor<13x21x1xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: bitwise_or
func.func @test_bitwise_or(%arg0: tensor<13x21x3xi32>, %arg1: tensor<13x1x3xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.bitwise_or %arg0, %arg1 : (tensor<13x21x3xi32>, tensor<13x1x3xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: bitwise_xor
func.func @test_bitwise_xor(%arg0: tensor<13x21x1xi32>, %arg1: tensor<13x21x3xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.bitwise_xor %arg0, %arg1 : (tensor<13x21x1xi32>, tensor<13x21x3xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: int_div
func.func @test_int_div(%arg0: tensor<13x21x1xi32>, %arg1: tensor<13x21x3xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.int_div %arg0, %arg1 : (tensor<13x21x1xi32>, tensor<13x21x3xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: logical_and
func.func @test_logical_and(%arg0: tensor<13x21x3xi1>, %arg1: tensor<13x21x1xi1>) -> tensor<13x21x3xi1> {
  %0 = tosa.logical_and %arg0, %arg1 : (tensor<13x21x3xi1>, tensor<13x21x1xi1>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: logical_left_shift
func.func @test_logical_left_shift(%arg0: tensor<13x21x3xi32>, %arg1: tensor<13x21x1xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.logical_left_shift %arg0, %arg1 : (tensor<13x21x3xi32>, tensor<13x21x1xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: logical_right_shift
func.func @test_logical_right_shift(%arg0: tensor<13x21x3xi32>, %arg1: tensor<13x21x1xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.logical_right_shift %arg0, %arg1 : (tensor<13x21x3xi32>, tensor<13x21x1xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: logical_or
func.func @test_logical_or(%arg0: tensor<13x1x3xi1>, %arg1: tensor<13x21x3xi1>) -> tensor<13x21x3xi1> {
  %0 = tosa.logical_or %arg0, %arg1 : (tensor<13x1x3xi1>, tensor<13x21x3xi1>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: logical_xor
func.func @test_logical_xor(%arg0: tensor<13x1x3xi1>, %arg1: tensor<13x21x3xi1>) -> tensor<13x21x3xi1> {
  %0 = tosa.logical_xor %arg0, %arg1 : (tensor<13x1x3xi1>, tensor<13x21x3xi1>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: maximum
func.func @test_max(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x21x1xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.maximum %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<13x21x1xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: minimum
func.func @test_min(%arg0: tensor<13x21x3xf32>, %arg1: tensor<1x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.minimum %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<1x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: mul
func.func @test_mul(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x1x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.mul %arg0, %arg1 {shift = 1 : i8} : (tensor<13x21x3xf32>, tensor<13x1x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: mul
func.func @test_mul_relaxed_result_type(%arg0: tensor<13x21x3xi16>, %arg1: tensor<13x1x3xi16>) -> tensor<13x21x3xi16> {
  %0 = "tosa.mul"(%arg0, %arg1)  { shift = 1 : i8 } : (tensor<13x21x3xi16>, tensor<13x1x3xi16>) -> tensor<13x21x3xi16>
  return %0 : tensor<13x21x3xi16>
}

// -----
// CHECK-LABEL: pow
func.func @test_pow(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x21x1xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.pow %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<13x21x1xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: sub
func.func @test_sub(%arg0: tensor<1x21x3xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.sub %arg0, %arg1 : (tensor<1x21x3xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: table
func.func @main(%arg0: tensor<64xi32>, %arg1: tensor<513x!quant.uniform<i16:f32, 1.0:0>>) -> tensor<64x!quant.uniform<i16:f32, 1.0:0>> {
    %0 = tosa.table %arg0, %arg1 : (tensor<64xi32>, tensor<513x!quant.uniform<i16:f32, 1.000000e+00>>) -> tensor<64x!quant.uniform<i16:f32, 1.000000e+00>>
    return %0 : tensor<64x!quant.uniform<i16:f32, 1.0:0>>
}

// -----
// CHECK-LABEL: abs
func.func @test_abs(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.abs %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: bitwise_not
func.func @test_bitwise_not(%arg0: tensor<13x21x1xi32>) -> tensor<13x21x1xi32> {
  %0 = tosa.bitwise_not %arg0 : (tensor<13x21x1xi32>) -> tensor<13x21x1xi32>
  return %0 : tensor<13x21x1xi32>
}

// -----
// CHECK-LABEL: ceil
func.func @test_ceil(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.ceil %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: clz
func.func @test_clz(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.clz %arg0 : (tensor<13x21x3xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: cos
func.func @test_cos(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.cos %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: exp
func.func @test_exp(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.exp %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: floor
func.func @test_floor(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.floor %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: log
func.func @test_log(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.log %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: logical_not
func.func @test_logical_not(%arg0: tensor<1x21x3xi1>) -> tensor<1x21x3xi1> {
  %0 = tosa.logical_not %arg0 : (tensor<1x21x3xi1>) -> tensor<1x21x3xi1>
  return %0 : tensor<1x21x3xi1>
}

// -----
// CHECK-LABEL: negate
func.func @test_negate(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.negate %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: reciprocal
func.func @test_reciprocal(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.reciprocal %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: rsqrt
func.func @test_rsqrt(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.rsqrt %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: sin
func.func @test_sin(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.sin %arg0 : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: select
func.func @test_select(%arg0: tensor<1x1x1xi1>, %arg1: tensor<13x21x3xf32>, %arg2: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.select %arg0, %arg1, %arg2 : (tensor<1x1x1xi1>, tensor<13x21x3xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}


// -----
// CHECK-LABEL: equal
func.func @test_equal(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x1x3xf32>) -> tensor<13x21x3xi1> {
  %0 = tosa.equal %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<13x1x3xf32>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: greater
func.func @test_greater(%arg0: tensor<13x21x1xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xi1> {
  %0 = tosa.greater %arg0, %arg1 : (tensor<13x21x1xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: greater_equal
func.func @test_greater_equal(%arg0: tensor<13x1x3xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<13x21x3xi1> {
  %0 = tosa.greater_equal %arg0, %arg1 : (tensor<13x1x3xf32>, tensor<13x21x3xf32>) -> tensor<13x21x3xi1>
  return %0 : tensor<13x21x3xi1>
}

// -----
// CHECK-LABEL: reduce_all
func.func @test_reduce_all(%arg0: tensor<13x21x3xi1>) -> tensor<21x3xi1> {
  %0 = tosa.reduce_all %arg0 {axis = 0 : i32} : (tensor<13x21x3xi1>) -> tensor<1x21x3xi1>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xi1>) -> tensor<21x3xi1>
  return %1 : tensor<21x3xi1>
}

// -----
// CHECK-LABEL: reduce_any
func.func @test_reduce_any(%arg0: tensor<13x21x3xi1>) -> tensor<21x3xi1> {
  %0 = tosa.reduce_any %arg0 {axis = 0 : i32} : (tensor<13x21x3xi1>) -> tensor<1x21x3xi1>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xi1>) -> tensor<21x3xi1>
  return %1 : tensor<21x3xi1>
}

// -----
// CHECK-LABEL: reduce_max
func.func @test_reduce_max(%arg0: tensor<13x21x3xf32>) -> tensor<21x3xf32> {
  %0 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<13x21x3xf32>) -> tensor<1x21x3xf32>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xf32>) -> tensor<21x3xf32>
  return %1 : tensor<21x3xf32>
}

// -----
// CHECK-LABEL: reduce_min
func.func @test_reduce_min(%arg0: tensor<13x21x3xf32>) -> tensor<21x3xf32> {
  %0 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<13x21x3xf32>) -> tensor<1x21x3xf32>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xf32>) -> tensor<21x3xf32>
  return %1 : tensor<21x3xf32>
}

// -----
// CHECK-LABEL: reduce_product
func.func @test_reduce_product(%arg0: tensor<13x21x3xf32>) -> tensor<21x3xf32> {
  %0 = tosa.reduce_prod %arg0 {axis = 0 : i32} : (tensor<13x21x3xf32>) -> tensor<1x21x3xf32>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xf32>) -> tensor<21x3xf32>
  return %1 : tensor<21x3xf32>
}

// -----
// CHECK-LABEL: reduce_sum
func.func @test_reduce_sum(%arg0: tensor<13x21x3xf32>) -> tensor<21x3xf32> {
  %0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<13x21x3xf32>) -> tensor<1x21x3xf32>
  %1 = tosa.reshape %0 {new_shape = array<i64: 21, 3>} : (tensor<1x21x3xf32>) -> tensor<21x3xf32>
  return %1 : tensor<21x3xf32>
}

// -----
// CHECK-LABEL: concat
func.func @test_concat(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x21x3xf32>) -> tensor<26x21x3xf32> {
  %0 = tosa.concat %arg0, %arg1 {axis = 0 : i32} : (tensor<13x21x3xf32>, tensor<13x21x3xf32>) -> tensor<26x21x3xf32>
  return %0 : tensor<26x21x3xf32>
}

// -----
// CHECK-LABEL: pad
func.func @test_pad(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3x2xi32>) -> tensor<13x21x3xf32> {
  %0 = tosa.pad %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<3x2xi32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: pad_explicit_value
func.func @test_pad_explicit_value(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3x2xi32>) -> tensor<13x21x3xf32> {
  %0 = "tosa.const"() {value = dense<3.14> : tensor<f32>} : () -> tensor<f32>
  %1 = tosa.pad %arg0, %arg1, %0 : (tensor<13x21x3xf32>, tensor<3x2xi32>, tensor<f32>) -> tensor<13x21x3xf32>
  return %1 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: reshape
func.func @test_reshape(%arg0: tensor<13x21x3xf32>) -> tensor<1x819xf32> {
  %0 = tosa.reshape %arg0 {new_shape = array<i64: 1, 819>} : (tensor<13x21x3xf32>) -> tensor<1x819xf32>
  return %0 : tensor<1x819xf32>
}

// -----
// CHECK-LABEL: reverse
func.func @test_reverse(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.reverse %arg0 {axis = 0 : i32} : (tensor<13x21x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: slice
func.func @test_slice(%arg0: tensor<13x21x3xf32>) -> tensor<4x11x1xf32> {
  %0 = tosa.slice %arg0 {size = array<i64: 4, 11, 1>, start = array<i64: 6, 8, 0>} : (tensor<13x21x3xf32>) -> tensor<4x11x1xf32>
  return %0 : tensor<4x11x1xf32>
}

// -----
// CHECK-LABEL: tile
func.func @test_tile(%arg0: tensor<13x21x3xf32>) -> tensor<39x21x6xf32> {
  %0 = tosa.tile %arg0 {multiples = array<i64: 3, 1, 2>} : (tensor<13x21x3xf32>) -> tensor<39x21x6xf32>
  return %0 : tensor<39x21x6xf32>
}

// -----
// CHECK-LABEL: transpose
func.func @test_transpose(%arg0: tensor<13x21x3xf32>) -> tensor<3x13x21xf32> {
  %0 = "tosa.const"() {value = dense<[2, 0, 1]> : tensor<3xi32>} : () -> tensor<3xi32>
  %1 = tosa.transpose %arg0, %0 : (tensor<13x21x3xf32>, tensor<3xi32>) -> tensor<3x13x21xf32>
  return %1 : tensor<3x13x21xf32>
}

// -----
// CHECK-LABEL: gather
func.func @test_gather(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x26xi32>) -> tensor<13x26x3xf32> {
  %0 = tosa.gather %arg0, %arg1 : (tensor<13x21x3xf32>, tensor<13x26xi32>) -> tensor<13x26x3xf32>
  return %0 : tensor<13x26x3xf32>
}

// -----
// CHECK-LABEL: scatter
func.func @test_scatter(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x26xi32>, %arg2: tensor<13x26x3xf32>) -> tensor<13x21x3xf32> {
  %0 = tosa.scatter %arg0, %arg1, %arg2 : (tensor<13x21x3xf32>, tensor<13x26xi32>, tensor<13x26x3xf32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: resize
func.func @test_resize(%arg0: tensor<1x32x32x8xf32>) -> tensor<1x64x64x8xf32> {
  %1 = tosa.resize %arg0 { scale = array<i64: 4, 2, 4, 2>, offset = array<i64: -1, -1>, border = array<i64: 1, 1>, mode = "BILINEAR" } : (tensor<1x32x32x8xf32>) -> tensor<1x64x64x8xf32>
  return %1 : tensor<1x64x64x8xf32>
}

// -----
// CHECK-LABEL: cast
func.func @test_cast1(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3xf32> {
  %0 = tosa.cast %arg0 : (tensor<13x21x3xi32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----
// CHECK-LABEL: cast2
func.func @test_cast2(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3x!quant.uniform<u8:f32, 0.078431375324726104:128>> {
  %0 = tosa.cast %arg0 : (tensor<13x21x3xi32>) -> tensor<13x21x3x!quant.uniform<u8:f32, 0.078431375324726104:128>>
  return %0 : tensor<13x21x3x!quant.uniform<u8:f32, 0.078431375324726104:128>>
}

// -----
// CHECK-LABEL: cast3
func.func @test_cast3(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3x!quant.uniform<i16:f32, 0.078431375324726104:128>> {
  %0 = tosa.cast %arg0 : (tensor<13x21x3xi32>) -> tensor<13x21x3x!quant.uniform<i16:f32, 0.078431375324726104:128>>
  return %0 : tensor<13x21x3x!quant.uniform<i16:f32, 0.078431375324726104:128>>
}

// -----
// CHECK-LABEL: rescale
func.func @test_rescale(%arg0: tensor<13x21x3x!quant.uniform<u8:f32, 0.015655439347028732:127>>) -> tensor<13x21x3x!quant.uniform<i8:f32, 0.015655439347028732:-1>> {
    %0 = tosa.rescale %arg0 {double_round = false, input_zp = 127 : i32, multiplier = array<i32: 1073741824>, output_zp = -1 : i32, per_channel = false, scale32 = true, shift = array<i8: 30>} : (tensor<13x21x3x!quant.uniform<u8:f32, 0.015655439347028732:127>>) -> tensor<13x21x3x!quant.uniform<i8:f32, 0.015655439347028732:-1>>
    return %0 : tensor<13x21x3x!quant.uniform<i8:f32, 0.015655439347028732:-1>>
}

// -----
// CHECK-LABEL: const
func.func @test_const(%arg0 : index) -> tensor<4xi32> {
    %0 = "tosa.const"() {value = dense<[3, 0, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
    return %0 : tensor<4xi32>
}

// -----
// CHECK-LABEL: identity
func.func @test_identity(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3xi32> {
  %0 = tosa.identity %arg0 : (tensor<13x21x3xi32>) -> tensor<13x21x3xi32>
  return %0 : tensor<13x21x3xi32>
}

// -----
// CHECK-LABEL: cond_if
func.func @test_cond_if(%arg0: tensor<f32>, %arg1: tensor<f32>, %arg2: tensor<i1>) -> tensor<f32> {
  %0 = tosa.cond_if %arg2 -> (tensor<f32>) {
    %1 = tosa.add %arg0, %arg1 : (tensor<f32>, tensor<f32>) -> tensor<f32>
    tosa.yield %1 : tensor<f32>
  } else {
    %1 = tosa.sub %arg0, %arg1 : (tensor<f32>, tensor<f32>) -> tensor<f32>
    tosa.yield %1 : tensor<f32>
  }
  return %0 : tensor<f32>
}

// -----
// CHECK-LABEL: while_loop
func.func @test_while_loop(%arg0: tensor<10xi32>, %arg1: tensor<i32>) {
  %0 = "tosa.const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
  %1:3 = tosa.while_loop (%arg2 = %0, %arg3 = %0, %arg4 = %arg0) : (tensor<i32>, tensor<i32>, tensor<10xi32>) -> (tensor<i32>, tensor<i32>, tensor<10xi32>) {
    %2 = tosa.greater_equal %arg3, %arg1 : (tensor<i32>, tensor<i32>) -> tensor<i1>
    %3 = tosa.logical_not %2 : (tensor<i1>) -> tensor<i1>
    tosa.yield %3 : tensor<i1>
  } do {
  ^bb0(%arg2: tensor<i32>, %arg3: tensor<i32>, %arg4: tensor<10xi32>):
    %2 = "tosa.const"() {value = dense<1> : tensor<i32>} : () -> tensor<i32>
    %3 = tosa.add %arg3, %2 : (tensor<i32>, tensor<i32>) -> tensor<i32>
    %4 = tosa.reshape %2 {new_shape = array<i64: 1>} : (tensor<i32>) -> tensor<1xi32>
    %5 = tosa.add %arg4, %4 : (tensor<10xi32>, tensor<1xi32>) -> tensor<10xi32>
    %6 = tosa.add %arg2, %2 : (tensor<i32>, tensor<i32>) -> tensor<i32>
    tosa.yield %6, %3, %5 : tensor<i32>, tensor<i32>, tensor<10xi32>
  }
  return
}

// -----
// CHECK-LABEL: custom
func.func @test_custom(%arg0: tensor<10xi32>) -> tensor<10xi32> {
  %0 = tosa.custom %arg0 {operator_name="custom_test", domain_name="tosa.mlir_test", implementation_attrs="" } : (tensor<10xi32>) -> (tensor<10xi32>)
  return %0 : tensor<10xi32>
}