llvm/mlir/test/Conversion/ArmSMEToLLVM/tile-spills-and-fills.mlir

// RUN: mlir-opt %s -test-arm-sme-tile-allocation -split-input-file | \
// RUN: FileCheck %s  --check-prefix=AFTER-TILE-ALLOC
// RUN: mlir-opt %s --pass-pipeline="builtin.module(func.func(convert-arm-sme-to-llvm,cse,canonicalize))" \
// RUN:   -split-input-file -verify-diagnostics | \
// RUN: FileCheck %s  --check-prefix=AFTER-LLVM-LOWERING

/// Checks tile spill/reloads are inserted around in-memory tiles (i.e. tiles
/// that were not assigned a physical SME tile).
///
/// These spills are currently very naive and will spill/reload entire tiles
/// around ArmSME ops.
///
/// The general pattern is:
///
/// During tile allocation if there's not a physical tile ID available an op
/// will be assigned an in-memory tile ID (which is a tile ID >= 16).
///
/// Example:
///
///   arm_sme.zero : vector<[8]x[8]xi16>
///
/// Becomes:
///
///   arm_sme.zero { tile_id = 16 } : vector<[8]x[8]xi16>
///
/// This works like normal until the final lowering to LLVM, where spills and
/// reloads will be inserted around uses of in-memory tiles.
///
/// So the above example becomes:
///
/// // Placed at the top of the function:
/// %tileAlloca = memref.alloca(%svl_h, %svl_h) : memref<?x?xi16>
///
/// Then around the op:
///
/// // Swap contents of %tileAlloca and tile 0
/// scf.for %sliceIdx ...
///   %currentSlice = arm_sme.intr.read.horiz {tile_id = 0}
///   arm_sme.intr.ld1h.horiz %tileAlloca[%sliceIdx, %c0] {tile_id = 0}
///   vector.store %currentSlice, %tileAlloca[%sliceIdx, %c0]
/// // Execute the op using tile 0
/// arm_sme.intr.zero
/// // Swap contents of %tileAlloca and tile 0
/// scf.for %sliceIdx ...
///   %currentSlice = arm_sme.intr.read.horiz {tile_id = 0}
///   arm_sme.intr.ld1h.horiz %tileAlloca[%sliceIdx, %c0] {tile_id = 0}
///   vector.store %currentSlice, %tileAlloca[%sliceIdx, %c0]
///

// -----

/// Note: In this example loads into ZA are inserted before the zero instruction.
/// These are obviously redundant, but there's no checks to avoid this.
func.func @use_too_many_tiles() {
  %0 = arm_sme.zero : vector<[4]x[4]xi32>
  "test.prevent_zero_merge"() : () -> ()
  %1 = arm_sme.zero : vector<[4]x[4]xi32>
  // expected-warning @below {{failed to allocate SME virtual tile to operation, tile value will go through memory, expect degraded performance}}
  %2 = arm_sme.zero : vector<[8]x[8]xi16>
  "test.some_use"(%0) : (vector<[4]x[4]xi32>) -> ()
  "test.some_use"(%1) : (vector<[4]x[4]xi32>) -> ()
  "test.some_use"(%2) : (vector<[8]x[8]xi16>) -> ()
  return
}
// AFTER-TILE-ALLOC-LABEL: @use_too_many_tiles
//      AFTER-TILE-ALLOC: arm_sme.zero
// AFTER-TILE-ALLOC-SAME:   tile_id = 0
//      AFTER-TILE-ALLOC: arm_sme.zero
// AFTER-TILE-ALLOC-SAME:   tile_id = 1
//      AFTER-TILE-ALLOC: arm_sme.zero
// AFTER-TILE-ALLOC-SAME:   tile_id = 16

// AFTER-LLVM-LOWERING-LABEL: @use_too_many_tiles
//  AFTER-LLVM-LOWERING-DAG: %[[C0:.*]] = arith.constant 0 : index
//  AFTER-LLVM-LOWERING-DAG: %[[C1:.*]] = arith.constant 1 : index
//  AFTER-LLVM-LOWERING-DAG: %[[C8:.*]] = arith.constant 8 : index
//  AFTER-LLVM-LOWERING-DAG: %[[VSCALE:.*]] = vector.vscale
//  AFTER-LLVM-LOWERING-DAG: %[[SVL_H:.*]] = arith.muli %[[VSCALE]], %[[C8]] : index

///     0. Create an in-memory-tile
///        Note: 16 is an in-memory tile ID, that is a tile ID >= 16

//  AFTER-LLVM-LOWERING-DAG: %[[TILE_ALLOCA:.*]] = memref.alloca(%[[SVL_H]], %[[SVL_H]])
// AFTER-LLVM-LOWERING-SAME:   {arm_sme.in_memory_tile_id = 16 : i32} : memref<?x?xi16>
//
//  AFTER-LLVM-LOWERING-NOT: scf.for

///     1. The following instruciton corresponds to %0 after tile allocation
///        Note: 17 is the mask for the 32-bit tile 0.

//      AFTER-LLVM-LOWERING: "arm_sme.intr.zero"() <{tile_mask = 17 : i32}>
//
//  AFTER-LLVM-LOWERING-NOT: scf.for

///     2. The following instruciton corresponds to %1 after tile allocation
///        Note: 34 is the mask for the 32-bit tile 1.

//      AFTER-LLVM-LOWERING: "arm_sme.intr.zero"() <{tile_mask = 34 : i32}>

///     3. swap(<in-memory-tile>, tile 0).
///        This can be interpreted as spilling %0 (the 32-bit tile 0), so that
///        %2 can be allocated a tile (16 bit tile 0). Note that this is
///        swapping vector<[8]x[8]xi16> rather than vector<[4]x[4]xi32>.

//      AFTER-LLVM-LOWERING: scf.for
// AFTER-LLVM-LOWERING-SAME: %[[C0]] to %[[SVL_H]] step %[[C1]] {
//      AFTER-LLVM-LOWERING:   %[[MEM_DESC:.*]] = builtin.unrealized_conversion_cast %[[TILE_ALLOCA]]
//      AFTER-LLVM-LOWERING:   %[[BASE_PTR:.*]] = llvm.extractvalue %[[MEM_DESC]][1]
//      AFTER-LLVM-LOWERING:   %[[SLICE_PTR:.*]] = llvm.getelementptr %[[BASE_PTR]]
//      AFTER-LLVM-LOWERING:   %[[SLICE:.*]] = "arm_sme.intr.read.horiz"{{.*}} <{tile_id = 0 : i32}>
// AFTER-LLVM-LOWERING-NEXT:   "arm_sme.intr.ld1h.horiz"({{.*}}, %[[SLICE_PTR]], {{.*}}) <{tile_id = 0 : i32}>
// AFTER-LLVM-LOWERING-NEXT:   vector.store %[[SLICE]], %[[TILE_ALLOCA]]
// AFTER-LLVM-LOWERING-NEXT: }

///     4. The following instruciton corresponds to %3 after tile allocation
///        Note: 85 is the mask for the 16-bit tile 0.

//      AFTER-LLVM-LOWERING: "arm_sme.intr.zero"() <{tile_mask = 85 : i32}>

///     5.  swap(<inMemoryTile>, tile 0)
///         This can be interpreted as restoring %0.

//      AFTER-LLVM-LOWERING: scf.for
// AFTER-LLVM-LOWERING-SAME: %[[C0]] to %[[SVL_H]] step %[[C1]] {
//      AFTER-LLVM-LOWERING:   %[[MEM_DESC:.*]] = builtin.unrealized_conversion_cast %[[TILE_ALLOCA]]
//      AFTER-LLVM-LOWERING:   %[[BASE_PTR:.*]] = llvm.extractvalue %[[MEM_DESC]][1]
//      AFTER-LLVM-LOWERING:   %[[SLICE_PTR:.*]] = llvm.getelementptr %[[BASE_PTR]]
//      AFTER-LLVM-LOWERING:   %[[SLICE:.*]] = "arm_sme.intr.read.horiz"{{.*}} <{tile_id = 0 : i32}>
// AFTER-LLVM-LOWERING-NEXT:   "arm_sme.intr.ld1h.horiz"({{.*}}, %[[SLICE_PTR]], {{.*}}) <{tile_id = 0 : i32}>
// AFTER-LLVM-LOWERING-NEXT:   vector.store %[[SLICE]], %[[TILE_ALLOCA]]
// AFTER-LLVM-LOWERING-NEXT: }

// -----

/// Note: In this example an entire tile swap is inserted before/after the
/// `arm_sme.load_tile_slice` operation. Really, this only needs to spill a
/// single tile slice (and can omit the initial load, like in the previous example).
func.func @very_excessive_spills(%useAllTiles : vector<[16]x[16]xi8>, %memref: memref<?x?xf32>) -> vector<[4]x[4]xf32> {
  %c0 = arith.constant 0 : index
  %tile = arm_sme.get_tile : vector<[4]x[4]xf32>
  %mask = vector.constant_mask [4] : vector<[4]xi1>
  // expected-warning @below {{failed to allocate SME virtual tile to operation, tile value will go through memory, expect degraded performance}}
  %loadSlice = arm_sme.load_tile_slice %memref[%c0, %c0], %mask, %tile, %c0 : memref<?x?xf32>, vector<[4]xi1>, vector<[4]x[4]xf32>
  "test.some_use"(%useAllTiles) : (vector<[16]x[16]xi8>) -> ()
  "test.some_use"(%loadSlice) : (vector<[4]x[4]xf32>) -> ()
}
// AFTER-TILE-ALLOC-LABEL: @very_excessive_spills
//      AFTER-TILE-ALLOC: arm_sme.load_tile_slice
// AFTER-TILE-ALLOC-SAME:   tile_id = 16

// AFTER-LLVM-LOWERING-LABEL: @very_excessive_spills
//  AFTER-LLVM-LOWERING-DAG: %[[C0:.*]] = arith.constant 0 : index
//  AFTER-LLVM-LOWERING-DAG: %[[C1:.*]] = arith.constant 1 : index
//  AFTER-LLVM-LOWERING-DAG: %[[C4:.*]] = arith.constant 4 : index
//  AFTER-LLVM-LOWERING-DAG: %[[VSCALE:.*]] = vector.vscale
//  AFTER-LLVM-LOWERING-DAG: %[[SVL_S:.*]] = arith.muli %[[VSCALE]], %[[C4]] : index
//  AFTER-LLVM-LOWERING-DAG: %[[TILE_ALLOCA:.*]] = memref.alloca(%[[SVL_S]], %[[SVL_S]])
// AFTER-LLVM-LOWERING-SAME:   {arm_sme.in_memory_tile_id = 16 : i32} : memref<?x?xf32>
//

/// 1. Swap %useAllTiles and %tile - note that this will only swap one 32-bit
///    tile (vector<[4]x[4]xf32>)

//      AFTER-LLVM-LOWERING: scf.for
// AFTER-LLVM-LOWERING-SAME: %[[C0]] to %[[SVL_S]] step %[[C1]] {
//      AFTER-LLVM-LOWERING:   %[[MEM_DESC:.*]] = builtin.unrealized_conversion_cast %[[TILE_ALLOCA]]
//      AFTER-LLVM-LOWERING:   %[[BASE_PTR:.*]] = llvm.extractvalue %[[MEM_DESC]][1]
//      AFTER-LLVM-LOWERING:   %[[SLICE_PTR:.*]] = llvm.getelementptr %[[BASE_PTR]]
// Read ZA tile slice -> vector
//      AFTER-LLVM-LOWERING:   %[[SLICE:.*]] = "arm_sme.intr.read.horiz"{{.*}} <{tile_id = 0 : i32}>
/// Load vector from memory -> ZA tile
// AFTER-LLVM-LOWERING-NEXT:   "arm_sme.intr.ld1w.horiz"({{.*}}, %[[SLICE_PTR]], {{.*}}) <{tile_id = 0 : i32}>
/// Store ZA tile slice in memory
// AFTER-LLVM-LOWERING-NEXT:   vector.store %[[SLICE]], %[[TILE_ALLOCA]]
// AFTER-LLVM-LOWERING-NEXT: }

/// 2. Load into %tile
//      AFTER-LLVM-LOWERING: "arm_sme.intr.ld1w.horiz"{{.*}} <{tile_id = 0 : i32}>

/// 3. Swap %useAllTiles and %tile - note that this will only swap one 32-bit
///    tile (vector<[4]x[4]xf32>)

//      AFTER-LLVM-LOWERING: scf.for
// AFTER-LLVM-LOWERING-SAME: %[[C0]] to %[[SVL_S]] step %[[C1]] {
//      AFTER-LLVM-LOWERING:   %[[MEM_DESC:.*]] = builtin.unrealized_conversion_cast %[[TILE_ALLOCA]]
//      AFTER-LLVM-LOWERING:   %[[BASE_PTR:.*]] = llvm.extractvalue %[[MEM_DESC]][1]
//      AFTER-LLVM-LOWERING:   %[[SLICE_PTR:.*]] = llvm.getelementptr %[[BASE_PTR]]
/// Read ZA tile slice -> vector
//      AFTER-LLVM-LOWERING:   %[[SLICE:.*]] = "arm_sme.intr.read.horiz"{{.*}} <{tile_id = 0 : i32}>
/// Load vector from memory -> ZA tile
// AFTER-LLVM-LOWERING-NEXT:   "arm_sme.intr.ld1w.horiz"({{.*}}, %[[SLICE_PTR]], {{.*}}) <{tile_id = 0 : i32}>
/// Store ZA tile slice in memory
// AFTER-LLVM-LOWERING-NEXT:   vector.store %[[SLICE]], %[[TILE_ALLOCA]]
// AFTER-LLVM-LOWERING-NEXT: }