//
// NOTE: this test requires gpu-sm80
//
// RUN: mlir-opt %s \
// RUN: --sparsifier="enable-runtime-library=false parallelization-strategy=dense-outer-loop gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format" \
// RUN: | mlir-cpu-runner \
// RUN: --shared-libs=%mlir_cuda_runtime \
// RUN: --shared-libs=%mlir_c_runner_utils \
// RUN: --e main --entry-point-result=void \
// RUN: | FileCheck %s
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
module {
// Compute matrix vector y = Ax
func.func @matvec(%A: tensor<?x?xf64, #CSR>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> {
%y_out = linalg.matvec
ins(%A, %x: tensor<?x?xf64, #CSR>, tensor<?xf64>)
outs(%y_in: tensor<?xf64>) -> tensor<?xf64>
return %y_out : tensor<?xf64>
}
func.func @main() {
%f0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
// Stress test with a dense matrix DA.
%DA = tensor.generate {
^bb0(%i: index, %j: index):
%k = arith.addi %i, %j : index
%l = arith.index_cast %k : index to i64
%f = arith.uitofp %l : i64 to f64
tensor.yield %f : f64
} : tensor<1024x64xf64>
// Convert to a "sparse" m x n matrix A.
%A = sparse_tensor.convert %DA : tensor<1024x64xf64> to tensor<?x?xf64, #CSR>
// Initialize dense vector with n elements:
// (1, 2, 3, 4, ..., n)
%d1 = tensor.dim %A, %c1 : tensor<?x?xf64, #CSR>
%x = tensor.generate %d1 {
^bb0(%i : index):
%k = arith.addi %i, %c1 : index
%j = arith.index_cast %k : index to i64
%f = arith.uitofp %j : i64 to f64
tensor.yield %f : f64
} : tensor<?xf64>
// Initialize dense vector to m zeros.
%d0 = tensor.dim %A, %c0 : tensor<?x?xf64, #CSR>
%y = tensor.generate %d0 {
^bb0(%i : index):
tensor.yield %f0 : f64
} : tensor<?xf64>
// Call the kernel.
%0 = call @matvec(%A, %x, %y) : (tensor<?x?xf64, #CSR>, tensor<?xf64>, tensor<?xf64>) -> tensor<?xf64>
//
// Sanity check on results.
//
// CHECK: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 )
//
%pb0 = vector.transfer_read %0[%c0], %f0 : tensor<?xf64>, vector<64xf64>
vector.print %pb0 : vector<64xf64>
// Release the resources.
bufferization.dealloc_tensor %A : tensor<?x?xf64, #CSR>
return
}
}