//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
// Test that test-bufferization-analysis-only works. This option is useful
// for understanding why buffer copies were inserted.
// RUN: mlir-opt %s --sparsifier="test-bufferization-analysis-only" -o /dev/null
#Sparse1 = #sparse_tensor.encoding<{
map = (i, j, k) -> (
j : compressed,
k : compressed,
i : dense
)
}>
#Sparse2 = #sparse_tensor.encoding<{
map = (i, j, k) -> (
i floordiv 2 : compressed,
j floordiv 2 : compressed,
k floordiv 2 : compressed,
i mod 2 : dense,
j mod 2 : dense,
k mod 2 : dense)
}>
module {
//
// Main driver that tests sparse tensor storage.
//
func.func @main() {
%c0 = arith.constant 0 : index
%i0 = arith.constant 0 : i32
// Setup input dense tensor and convert to two sparse tensors.
%d = arith.constant dense <[
[ // i=0
[ 1, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 5, 0 ] ],
[ // i=1
[ 2, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 6, 0 ] ],
[ //i=2
[ 3, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 7, 0 ] ],
//i=3
[ [ 4, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 8, 0 ] ]
]> : tensor<4x4x4xi32>
%a = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse1>
%b = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse2>
//
// If we store the two "fibers" [1,2,3,4] starting at index (0,0,0) and
// ending at index (3,0,0) and [5,6,7,8] starting at index (0,3,2) and
// ending at index (3,3,2)) with a “DCSR-flavored” along (j,k) with
// dense “fibers” in the i-dim, we end up with 8 stored entries.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 8
// CHECK-NEXT: dim = ( 4, 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 2 )
// CHECK-NEXT: crd[0] : ( 0, 3 )
// CHECK-NEXT: pos[1] : ( 0, 1, 2 )
// CHECK-NEXT: crd[1] : ( 0, 2 )
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %a : tensor<4x4x4xi32, #Sparse1>
//
// If we store full 2x2x2 3-D blocks in the original index order
// in a compressed fashion, we end up with 4 blocks to incorporate
// all the nonzeros, and thus 32 stored entries.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: dim = ( 4, 4, 4 )
// CHECK-NEXT: lvl = ( 2, 2, 2, 2, 2, 2 )
// CHECK-NEXT: pos[0] : ( 0, 2 )
// CHECK-NEXT: crd[0] : ( 0, 1 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4 )
// CHECK-NEXT: crd[1] : ( 0, 1, 0, 1 )
// CHECK-NEXT: pos[2] : ( 0, 1, 2, 3, 4 )
// CHECK-NEXT: crd[2] : ( 0, 1, 0, 1 )
// CHECK-NEXT: values : ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 6, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8, 0 )
// CHECK-NEXT: ----
//
sparse_tensor.print %b : tensor<4x4x4xi32, #Sparse2>
// Release the resources.
bufferization.dealloc_tensor %a : tensor<4x4x4xi32, #Sparse1>
bufferization.dealloc_tensor %b : tensor<4x4x4xi32, #Sparse2>
return
}
}