# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
# RUN: %PYTHON %s | FileCheck %s
import ctypes
import os
import sys
import tempfile
from mlir import ir
from mlir import runtime as rt
from mlir.dialects import builtin
from mlir.dialects import sparse_tensor as st
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import sparsifier
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method."""
return f"""
func.func @main(%p : !llvm.ptr) -> () attributes {{ llvm.emit_c_interface }} {{
%d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]],
[1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64>
%a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}>
sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr
return
}}
"""
def expected(id_map):
"""Returns expected contents of output.
+-----+-----+-----+-----+-----+
| 1 0 | . . | . . | . . | 0 3 |
| 0 2 | . . | . . | . . | 0 0 |
+-----+-----+-----+-----+-----+
| . . | . . | . . | . . | . . |
| . . | . . | . . | . . | . . |
+-----+-----+-----+-----+-----+
| . . | . . | 5 0 | . . | . . |
| . . | . . | 0 0 | . . | . . |
+-----+-----+-----+-----+-----+
| . . | . . | . . | . . | . . |
| . . | . . | . . | . . | . . |
+-----+-----+-----+-----+-----+
| 0 0 | . . | . . | . . | . . |
| 4 0 | . . | . . | . . | . . |
+-----+-----+-----+-----+-----+
Output appears as dimension coordinates but lexicographically
sorted by level coordinates. For BSR, the blocks are filled.
"""
if id_map is 0:
return f"""# extended FROSTT format
2 5
10 10
1 1 1
1 10 3
2 2 2
5 5 5
10 1 4
"""
if id_map is 1:
return f"""# extended FROSTT format
2 5
10 10
1 1 1
10 1 4
2 2 2
5 5 5
1 10 3
"""
if id_map is 2:
return f"""# extended FROSTT format
2 16
10 10
1 1 1
1 2 0
2 1 0
2 2 2
1 9 0
1 10 3
2 9 0
2 10 0
5 5 5
5 6 0
6 5 0
6 6 0
9 1 0
9 2 0
10 1 4
10 2 0
"""
raise AssertionError("unexpected id_map")
def build_compile_and_run_output(attr: st.EncodingAttr, compiler, expected):
# Build and Compile.
module = ir.Module.parse(boilerplate(attr))
engine = compiler.compile_and_jit(module)
# Invoke the kernel and compare output.
with tempfile.TemporaryDirectory() as test_dir:
out = os.path.join(test_dir, "out.tns")
buf = out.encode("utf-8")
mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
engine.invoke("main", mem_a)
actual = open(out).read()
if actual != expected:
quit("FAILURE")
def main():
support_lib = os.getenv("SUPPORT_LIB")
assert support_lib is not None, "SUPPORT_LIB is undefined"
if not os.path.exists(support_lib):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
# CHECK-LABEL: TEST: test_output
print("\nTEST: test_output")
count = 0
with ir.Context() as ctx, ir.Location.unknown():
# Loop over various sparse types (COO, CSR, DCSR, CSC, DCSC) with
# regular and loose compression and various metadata bitwidths.
# For these simple orderings, dim2lvl and lvl2dim are the same.
builder = st.EncodingAttr.build_level_type
fmt = st.LevelFormat
prop = st.LevelProperty
levels = [
[builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)],
[builder(fmt.dense), builder(fmt.compressed)],
[builder(fmt.dense), builder(fmt.loose_compressed)],
[builder(fmt.compressed), builder(fmt.compressed)],
]
orderings = [
(ir.AffineMap.get_permutation([0, 1]), 0),
(ir.AffineMap.get_permutation([1, 0]), 1),
]
bitwidths = [8, 64]
compiler = sparsifier.Sparsifier(
options="", opt_level=2, shared_libs=[support_lib]
)
for level in levels:
for ordering, id_map in orderings:
for bwidth in bitwidths:
attr = st.EncodingAttr.get(
level, ordering, ordering, bwidth, bwidth
)
build_compile_and_run_output(attr, compiler, expected(id_map))
count = count + 1
# Now do the same for BSR.
level = [
builder(fmt.dense),
builder(fmt.compressed),
builder(fmt.dense),
builder(fmt.dense),
]
d0 = ir.AffineDimExpr.get(0)
d1 = ir.AffineDimExpr.get(1)
c2 = ir.AffineConstantExpr.get(2)
dim2lvl = ir.AffineMap.get(
2,
0,
[
ir.AffineExpr.get_floor_div(d0, c2),
ir.AffineExpr.get_floor_div(d1, c2),
ir.AffineExpr.get_mod(d0, c2),
ir.AffineExpr.get_mod(d1, c2),
],
)
l0 = ir.AffineDimExpr.get(0)
l1 = ir.AffineDimExpr.get(1)
l2 = ir.AffineDimExpr.get(2)
l3 = ir.AffineDimExpr.get(3)
lvl2dim = ir.AffineMap.get(4, 0, [2 * l0 + l2, 2 * l1 + l3])
attr = st.EncodingAttr.get(level, dim2lvl, lvl2dim, 0, 0)
build_compile_and_run_output(attr, compiler, expected(2))
count = count + 1
# CHECK: Passed 17 tests
print("Passed", count, "tests")
if __name__ == "__main__":
main()