// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(cse))' | FileCheck %s
// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 mod 2)>
#map0 = affine_map<(d0) -> (d0 mod 2)>
// CHECK-LABEL: @simple_constant
func.func @simple_constant() -> (i32, i32) {
// CHECK-NEXT: %[[VAR_c1_i32:.*]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c1_i32]], %[[VAR_c1_i32]] : i32, i32
%1 = arith.constant 1 : i32
return %0, %1 : i32, i32
}
// CHECK-LABEL: @basic
func.func @basic() -> (index, index) {
// CHECK: %[[VAR_c0:[0-9a-zA-Z_]+]] = arith.constant 0 : index
%c0 = arith.constant 0 : index
%c1 = arith.constant 0 : index
// CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = affine.apply #[[$MAP]](%[[VAR_c0]])
%0 = affine.apply #map0(%c0)
%1 = affine.apply #map0(%c1)
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_0]] : index, index
return %0, %1 : index, index
}
// CHECK-LABEL: @many
func.func @many(f32, f32) -> (f32) {
^bb0(%a : f32, %b : f32):
// CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.addf %{{.*}}, %{{.*}} : f32
%c = arith.addf %a, %b : f32
%d = arith.addf %a, %b : f32
%e = arith.addf %a, %b : f32
%f = arith.addf %a, %b : f32
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_0]], %[[VAR_0]] : f32
%g = arith.addf %c, %d : f32
%h = arith.addf %e, %f : f32
%i = arith.addf %c, %e : f32
// CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_1]], %[[VAR_1]] : f32
%j = arith.addf %g, %h : f32
%k = arith.addf %h, %i : f32
// CHECK-NEXT: %[[VAR_3:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_2]], %[[VAR_2]] : f32
%l = arith.addf %j, %k : f32
// CHECK-NEXT: return %[[VAR_3]] : f32
return %l : f32
}
/// Check that operations are not eliminated if they have different operands.
// CHECK-LABEL: @different_ops
func.func @different_ops() -> (i32, i32) {
// CHECK: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 0 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c0_i32]], %[[VAR_c1_i32]] : i32, i32
return %0, %1 : i32, i32
}
/// Check that operations are not eliminated if they have different result
/// types.
// CHECK-LABEL: @different_results
func.func @different_results(%arg0: tensor<*xf32>) -> (tensor<?x?xf32>, tensor<4x?xf32>) {
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<?x?xf32>
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<4x?xf32>
%0 = tensor.cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
%1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32>
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : tensor<?x?xf32>, tensor<4x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<4x?xf32>
}
/// Check that operations are not eliminated if they have different attributes.
// CHECK-LABEL: @different_attributes
func.func @different_attributes(index, index) -> (i1, i1, i1) {
^bb0(%a : index, %b : index):
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.cmpi slt, %{{.*}}, %{{.*}} : index
%0 = arith.cmpi slt, %a, %b : index
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.cmpi ne, %{{.*}}, %{{.*}} : index
/// Predicate 1 means inequality comparison.
%1 = arith.cmpi ne, %a, %b : index
%2 = "arith.cmpi"(%a, %b) {predicate = 1} : (index, index) -> i1
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]], %[[VAR_1]] : i1, i1, i1
return %0, %1, %2 : i1, i1, i1
}
/// Check that operations with side effects are not eliminated.
// CHECK-LABEL: @side_effect
func.func @side_effect() -> (memref<2x1xf32>, memref<2x1xf32>) {
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32>
%0 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32>
%1 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : memref<2x1xf32>, memref<2x1xf32>
return %0, %1 : memref<2x1xf32>, memref<2x1xf32>
}
/// Check that operation definitions are properly propagated down the dominance
/// tree.
// CHECK-LABEL: @down_propagate_for
func.func @down_propagate_for() {
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: "foo"(%[[VAR_c1_i32]], %[[VAR_c1_i32]]) : (i32, i32) -> ()
%1 = arith.constant 1 : i32
"foo"(%0, %1) : (i32, i32) -> ()
}
return
}
// CHECK-LABEL: @down_propagate
func.func @down_propagate() -> i32 {
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c1_i32]] : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32)
%1 = arith.constant 1 : i32
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32):
return %arg : i32
}
/// Check that operation definitions are NOT propagated up the dominance tree.
// CHECK-LABEL: @up_propagate_for
func.func @up_propagate_for() -> i32 {
// CHECK: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: "foo"(%[[VAR_c1_i32_0]]) : (i32) -> ()
%0 = arith.constant 1 : i32
"foo"(%0) : (i32) -> ()
}
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c1_i32]] : i32
%1 = arith.constant 1 : i32
return %1 : i32
}
// CHECK-LABEL: func @up_propagate
func.func @up_propagate() -> i32 {
// CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
%0 = arith.constant 0 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c0_i32]] : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32)
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32): // CHECK: ^bb2
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addi %{{.*}}, %[[VAR_c1_i32_0]] : i32
%add = arith.addi %arg, %2 : i32
// CHECK-NEXT: return %[[VAR_1]] : i32
return %add : i32
}
/// The same test as above except that we are testing on a cfg embedded within
/// an operation region.
// CHECK-LABEL: func @up_propagate_region
func.func @up_propagate_region() -> i32 {
// CHECK-NEXT: {{.*}} "foo.region"
%0 = "foo.region"() ({
// CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
// CHECK-NEXT: cf.cond_br
%1 = arith.constant 0 : i32
%true = arith.constant true
cf.cond_br %true, ^bb1, ^bb2(%1 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: cf.br
%c1_i32 = arith.constant 1 : i32
cf.br ^bb2(%c1_i32 : i32)
^bb2(%arg : i32): // CHECK: ^bb2(%[[VAR_1:.*]]: i32):
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addi %[[VAR_1]], %[[VAR_c1_i32_0]] : i32
// CHECK-NEXT: "foo.yield"(%[[VAR_2]]) : (i32) -> ()
%c1_i32_0 = arith.constant 1 : i32
%2 = arith.addi %arg, %c1_i32_0 : i32
"foo.yield" (%2) : (i32) -> ()
}) : () -> (i32)
return %0 : i32
}
/// This test checks that nested regions that are isolated from above are
/// properly handled.
// CHECK-LABEL: @nested_isolated
func.func @nested_isolated() -> i32 {
// CHECK-NEXT: arith.constant 1
%0 = arith.constant 1 : i32
// CHECK-NEXT: builtin.module
// CHECK-NEXT: @nested_func
builtin.module {
func.func @nested_func() {
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}
}
// CHECK: "foo.region"
"foo.region"() ({
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}) : () -> ()
return %0 : i32
}
/// This test is checking that CSE gracefully handles values in graph regions
/// where the use occurs before the def, and one of the defs could be CSE'd with
/// the other.
// CHECK-LABEL: @use_before_def
func.func @use_before_def() {
// CHECK-NEXT: test.graph_region
test.graph_region {
// CHECK-NEXT: arith.addi
%0 = arith.addi %1, %2 : i32
// CHECK-NEXT: arith.constant 1
// CHECK-NEXT: arith.constant 1
%1 = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: "foo.yield"(%{{.*}}) : (i32) -> ()
"foo.yield"(%0) : (i32) -> ()
}
return
}
/// This test is checking that CSE is removing duplicated read op that follow
/// other.
// CHECK-LABEL: @remove_direct_duplicated_read_op
func.func @remove_direct_duplicated_read_op() -> i32 {
// CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
%1 = "test.op_with_memread"() : () -> (i32)
// CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE]], %[[READ_VALUE]] : i32
%2 = arith.addi %0, %1 : i32
return %2 : i32
}
/// This test is checking that CSE is removing duplicated read op that follow
/// other.
// CHECK-LABEL: @remove_multiple_duplicated_read_op
func.func @remove_multiple_duplicated_read_op() -> i64 {
// CHECK: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i64
%0 = "test.op_with_memread"() : () -> (i64)
%1 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %[[READ_VALUE]] : i64
%2 = arith.addi %0, %1 : i64
%3 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64
%4 = arith.addi %2, %3 : i64
%5 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64
%6 = arith.addi %4, %5 : i64
// CHECK-NEXT: return %{{.*}} : i64
return %6 : i64
}
/// This test is checking that CSE is not removing duplicated read op that
/// have write op in between.
// CHECK-LABEL: @dont_remove_duplicated_read_op_with_sideeffecting
func.func @dont_remove_duplicated_read_op_with_sideeffecting() -> i32 {
// CHECK-NEXT: %[[READ_VALUE0:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
"test.op_with_memwrite"() : () -> ()
// CHECK: %[[READ_VALUE1:.*]] = "test.op_with_memread"() : () -> i32
%1 = "test.op_with_memread"() : () -> (i32)
// CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE0]], %[[READ_VALUE1]] : i32
%2 = arith.addi %0, %1 : i32
return %2 : i32
}
// Check that an operation with a single region can CSE.
func.func @cse_single_block_ops(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @cse_single_block_ops
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK-NOT: test.cse_of_single_block_op
// CHECK: return %[[OP]], %[[OP]]
// Operations with different number of bbArgs dont CSE.
func.func @no_cse_varied_bbargs(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_varied_bbargs
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
// Operations with different regions dont CSE
func.func @no_cse_region_difference_simple(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg1 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_region_difference_simple
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
// Operation with identical region with multiple statements CSE.
func.func @cse_single_block_ops_identical_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @cse_single_block_ops_identical_bodies
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK-NOT: test.cse_of_single_block_op
// CHECK: return %[[OP]], %[[OP]]
// Operation with non-identical regions dont CSE.
func.func @no_cse_single_block_ops_different_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %2, %1 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_single_block_ops_different_bodies
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
func.func @failing_issue_59135(%arg0: tensor<2x2xi1>, %arg1: f32, %arg2 : tensor<2xi1>) -> (tensor<2xi1>, tensor<2xi1>) {
%false_2 = arith.constant false
%true_5 = arith.constant true
%9 = test.cse_of_single_block_op inputs(%arg2) {
^bb0(%out: i1):
%true_144 = arith.constant true
test.region_yield %true_144 : i1
} : tensor<2xi1> -> tensor<2xi1>
%15 = test.cse_of_single_block_op inputs(%arg2) {
^bb0(%out: i1):
%true_144 = arith.constant true
test.region_yield %true_144 : i1
} : tensor<2xi1> -> tensor<2xi1>
%93 = arith.maxsi %false_2, %true_5 : i1
return %9, %15 : tensor<2xi1>, tensor<2xi1>
}
// CHECK-LABEL: func @failing_issue_59135
// CHECK: %[[TRUE:.+]] = arith.constant true
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK: test.region_yield %[[TRUE]]
// CHECK: return %[[OP]], %[[OP]]
func.func @cse_multiple_regions(%c: i1, %t: tensor<5xf32>) -> (tensor<5xf32>, tensor<5xf32>) {
%r1 = scf.if %c -> (tensor<5xf32>) {
%0 = tensor.empty() : tensor<5xf32>
scf.yield %0 : tensor<5xf32>
} else {
scf.yield %t : tensor<5xf32>
}
%r2 = scf.if %c -> (tensor<5xf32>) {
%0 = tensor.empty() : tensor<5xf32>
scf.yield %0 : tensor<5xf32>
} else {
scf.yield %t : tensor<5xf32>
}
return %r1, %r2 : tensor<5xf32>, tensor<5xf32>
}
// CHECK-LABEL: func @cse_multiple_regions
// CHECK: %[[if:.*]] = scf.if {{.*}} {
// CHECK: tensor.empty
// CHECK: scf.yield
// CHECK: } else {
// CHECK: scf.yield
// CHECK: }
// CHECK-NOT: scf.if
// CHECK: return %[[if]], %[[if]]
// CHECK-LABEL: @cse_recursive_effects_success
func.func @cse_recursive_effects_success() -> (i32, i32, i32) {
// CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
// do something with recursive effects, containing no side effects
%true = arith.constant true
// CHECK-NEXT: %[[TRUE:.+]] = arith.constant true
// CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) {
%1 = scf.if %true -> (i32) {
%c42 = arith.constant 42 : i32
scf.yield %c42 : i32
// CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32
// CHECK-NEXT: scf.yield %[[C42]]
// CHECK-NEXT: } else {
} else {
%c24 = arith.constant 24 : i32
scf.yield %c24 : i32
// CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32
// CHECK-NEXT: scf.yield %[[C24]]
// CHECK-NEXT: }
}
// %2 can be removed
// CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE]], %[[IF]] : i32, i32, i32
%2 = "test.op_with_memread"() : () -> (i32)
return %0, %2, %1 : i32, i32, i32
}
// CHECK-LABEL: @cse_recursive_effects_failure
func.func @cse_recursive_effects_failure() -> (i32, i32, i32) {
// CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
// do something with recursive effects, containing a write effect
%true = arith.constant true
// CHECK-NEXT: %[[TRUE:.+]] = arith.constant true
// CHECK-NEXT: %[[IF:.+]] = scf.if %[[TRUE]] -> (i32) {
%1 = scf.if %true -> (i32) {
"test.op_with_memwrite"() : () -> ()
// CHECK-NEXT: "test.op_with_memwrite"() : () -> ()
%c42 = arith.constant 42 : i32
scf.yield %c42 : i32
// CHECK-NEXT: %[[C42:.+]] = arith.constant 42 : i32
// CHECK-NEXT: scf.yield %[[C42]]
// CHECK-NEXT: } else {
} else {
%c24 = arith.constant 24 : i32
scf.yield %c24 : i32
// CHECK-NEXT: %[[C24:.+]] = arith.constant 24 : i32
// CHECK-NEXT: scf.yield %[[C24]]
// CHECK-NEXT: }
}
// %2 can not be be removed because of the write
// CHECK-NEXT: %[[READ_VALUE2:.*]] = "test.op_with_memread"() : () -> i32
// CHECK-NEXT: return %[[READ_VALUE]], %[[READ_VALUE2]], %[[IF]] : i32, i32, i32
%2 = "test.op_with_memread"() : () -> (i32)
return %0, %2, %1 : i32, i32, i32
}