// RUN: mlir-opt -transform-interpreter -cse -split-input-file %s | FileCheck %s
func.func @gemm_gemm_fusion_yield_both(%lhs0 : tensor<?x?xf32>, %rhs0 : tensor<?x?xf32>, %rhs1 : tensor<?x?xf32>,
%init0 : tensor<?x?xf32>, %init1 : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%cst = arith.constant 0.0 : f32
%d0 = tensor.dim %lhs0, %c0 : tensor<?x?xf32>
%d1 = tensor.dim %rhs0, %c1 : tensor<?x?xf32>
%fill0 = linalg.fill ins(%cst : f32) outs(%init0 : tensor<?x?xf32>) -> tensor<?x?xf32>
%gemm0 = linalg.matmul
ins(%lhs0, %rhs0 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%fill0 : tensor<?x?xf32>) -> tensor<?x?xf32>
%d2 = tensor.dim %rhs1, %c1 : tensor<?x?xf32>
%fill1 = linalg.fill ins(%cst : f32) outs(%init1 : tensor<?x?xf32>) -> tensor<?x?xf32>
%gemm1 = linalg.matmul
ins(%gemm0, %rhs1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%fill1 : tensor<?x?xf32>) -> tensor<?x?xf32>
return %gemm0, %gemm1 : tensor<?x?xf32>, tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%matmuls = transform.structured.match ops{["linalg.matmul"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%mm1, %mm2 = transform.split_handle %matmuls
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_and_yield %mm2 [10] use_forall true
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @gemm_gemm_fusion_yield_both(
// CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[INIT0:[a-zA-Z0-9]+]]: tensor<?x?xf32>,
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<?x?xf32>)
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK: %[[RESULT:.+]]:2 = scf.forall (%[[IV:[a-zA-Z0-9]+]]) =
// CHECK-SAME: shared_outs(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT1]], %[[ITERARG1:[a-zA-Z0-9]+]] = %[[INIT0]])
// CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0]
// CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][0, 0]
// CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV]], 0]
// CHECK: %[[FILL0_TILE:.+]] = linalg.fill
// CHECK-SAME: outs(%[[INIT0_TILE]] :
// CHECK: %[[GEMM0_TILE:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] :
// CHECK-SAME: outs(%[[FILL0_TILE]] :
// CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][0, 0]
// CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0]
// CHECK: %[[FILL1_TILE:.+]] = linalg.fill
// CHECK-SAME: outs(%[[INIT1_TILE]] :
// CHECK: %[[GEMM1_TILE:.+]] = linalg.matmul
// CHECK-SAME: ins(%[[GEMM0_TILE]], %[[RHS1_TILE]] :
// CHECK-SAME: outs(%[[FILL1_TILE]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GEMM1_TILE]] into %[[ITERARG0]][%[[IV]], 0]
// CHECK: tensor.parallel_insert_slice %[[GEMM0_TILE]] into %[[ITERARG1]][%[[IV]], 0]
// CHECK: return %[[RESULT]]#1, %[[RESULT]]#0