# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import sparse_tensor as st
import textwrap
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testEncodingAttr1D
@run
def testEncodingAttr1D():
with Context() as ctx:
parsed = Attribute.parse(
textwrap.dedent(
"""\
#sparse_tensor.encoding<{
map = (d0) -> (d0 : compressed),
posWidth = 16,
crdWidth = 32,
explicitVal = 1.0 : f64
}>\
"""
)
)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 16, crdWidth = 32, explicitVal = 1.000000e+00 : f64 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [262144]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0) -> (d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: lvl_to_dim: (d0) -> (d0)
print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
# CHECK: explicit_val: 1.000000e+00
print(f"explicit_val: {casted.explicit_val}")
# CHECK: implicit_val: None
print(f"implicit_val: {casted.implicit_val}")
new_explicit_val = FloatAttr.get_f64(1.0)
created = st.EncodingAttr.get(
casted.lvl_types, None, None, 0, 0, new_explicit_val
)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), explicitVal = 1.000000e+00 : f64 }>
print(created)
# CHECK: created_equal: False
print(f"created_equal: {created == casted}")
# Verify that the factory creates an instance of the proper type.
# CHECK: is_proper_instance: True
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
# CHECK: created_pos_width: 0
print(f"created_pos_width: {created.pos_width}")
# CHECK-LABEL: TEST: testEncodingAttrStructure
@run
def testEncodingAttrStructure():
with Context() as ctx:
parsed = Attribute.parse(
textwrap.dedent(
"""\
#sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense,
d1 mod 4 : structured[2, 4]),
posWidth = 16,
crdWidth = 32,
}>\
"""
)
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]), posWidth = 16, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [65536, 65536, 4406638542848]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: lvl_formats_enum: [<LevelFormat.dense: 65536>, <LevelFormat.dense: 65536>, <LevelFormat.n_out_of_m: 2097152>]
print(f"lvl_formats_enum: {casted.lvl_formats_enum}")
# CHECK: structured_n: 2
print(f"structured_n: {casted.structured_n}")
# CHECK: structured_m: 4
print(f"structured_m: {casted.structured_m}")
# CHECK: dim_to_lvl: (d0, d1) -> (d0, d1 floordiv 4, d1 mod 4)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: lvl_to_dim: (d0, d1, d2) -> (d0, d1 * 4 + d2)
print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(
casted.lvl_types, casted.dim_to_lvl, casted.lvl_to_dim, 0, 0
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }>
print(created)
# CHECK: created_equal: False
print(f"created_equal: {created == casted}")
built_2_4 = st.EncodingAttr.build_level_type(
st.LevelFormat.n_out_of_m, [], 2, 4
)
built_dense = st.EncodingAttr.build_level_type(st.LevelFormat.dense)
dim_to_lvl = AffineMap.get(
2,
0,
[
AffineExpr.get_dim(0),
AffineExpr.get_floor_div(AffineExpr.get_dim(1), 4),
AffineExpr.get_mod(AffineExpr.get_dim(1), 4),
],
)
lvl_to_dim = AffineMap.get(
3,
0,
[
AffineExpr.get_dim(0),
AffineExpr.get_add(
AffineExpr.get_mul(AffineExpr.get_dim(1), 4),
AffineExpr.get_dim(2),
),
],
)
built = st.EncodingAttr.get(
[built_dense, built_dense, built_2_4],
dim_to_lvl,
lvl_to_dim,
0,
0,
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }>
print(built)
# CHECK: built_equal: True
print(f"built_equal: {built == created}")
# Verify that the factory creates an instance of the proper type.
# CHECK: is_proper_instance: True
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
# CHECK: created_pos_width: 0
print(f"created_pos_width: {created.pos_width}")
# CHECK-LABEL: TEST: testEncodingAttr2D
@run
def testEncodingAttr2D():
with Context() as ctx:
parsed = Attribute.parse(
textwrap.dedent(
"""\
#sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : dense, d0 : compressed),
posWidth = 8,
crdWidth = 32,
}>\
"""
)
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [65536, 262144]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: lvl_to_dim: (d0, d1) -> (d1, d0)
print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 8
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(
casted.lvl_types,
casted.dim_to_lvl,
casted.lvl_to_dim,
8,
32,
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
print(created)
# CHECK: created_equal: True
print(f"created_equal: {created == casted}")
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
@run
def testEncodingAttrOnTensorType():
with Context() as ctx, Location.unknown():
encoding = st.EncodingAttr(
Attribute.parse(
textwrap.dedent(
"""\
#sparse_tensor.encoding<{
map = (d0) -> (d0 : compressed),
posWidth = 64,
crdWidth = 32,
}>\
"""
)
)
)
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>>
print(tt)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>
print(tt.encoding)
assert tt.encoding == encoding