# RUN: %PYTHON %s 2>&1 | FileCheck %s
# REQUIRES: host-supports-jit
import gc, sys, os, tempfile
from mlir.ir import *
from mlir.passmanager import *
from mlir.execution_engine import *
from mlir.runtime import *
from ml_dtypes import bfloat16, float8_e5m2
# Log everything to stderr and flush so that we have a unified stream to match
# errors/info emitted by MLIR to stderr.
def log(*args):
print(*args, file=sys.stderr)
sys.stderr.flush()
def run(f):
log("\nTEST:", f.__name__)
f()
gc.collect()
assert Context._get_live_count() == 0
# Verify capsule interop.
# CHECK-LABEL: TEST: testCapsule
def testCapsule():
with Context():
module = Module.parse(
r"""
llvm.func @none() {
llvm.return
}
"""
)
execution_engine = ExecutionEngine(module)
execution_engine_capsule = execution_engine._CAPIPtr
# CHECK: mlir.execution_engine.ExecutionEngine._CAPIPtr
log(repr(execution_engine_capsule))
execution_engine._testing_release()
execution_engine1 = ExecutionEngine._CAPICreate(execution_engine_capsule)
# CHECK: _mlirExecutionEngine.ExecutionEngine
log(repr(execution_engine1))
run(testCapsule)
# Test invalid ExecutionEngine creation
# CHECK-LABEL: TEST: testInvalidModule
def testInvalidModule():
with Context():
# Builtin function
module = Module.parse(
r"""
func.func @foo() { return }
"""
)
# CHECK: Got RuntimeError: Failure while creating the ExecutionEngine.
try:
execution_engine = ExecutionEngine(module)
except RuntimeError as e:
log("Got RuntimeError: ", e)
run(testInvalidModule)
def lowerToLLVM(module):
pm = PassManager.parse(
"builtin.module(convert-complex-to-llvm,finalize-memref-to-llvm,convert-func-to-llvm,reconcile-unrealized-casts)"
)
pm.run(module.operation)
return module
# Test simple ExecutionEngine execution
# CHECK-LABEL: TEST: testInvokeVoid
def testInvokeVoid():
with Context():
module = Module.parse(
r"""
func.func @void() attributes { llvm.emit_c_interface } {
return
}
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
# Nothing to check other than no exception thrown here.
execution_engine.invoke("void")
run(testInvokeVoid)
# Test argument passing and result with a simple float addition.
# CHECK-LABEL: TEST: testInvokeFloatAdd
def testInvokeFloatAdd():
with Context():
module = Module.parse(
r"""
func.func @add(%arg0: f32, %arg1: f32) -> f32 attributes { llvm.emit_c_interface } {
%add = arith.addf %arg0, %arg1 : f32
return %add : f32
}
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
# Prepare arguments: two input floats and one result.
# Arguments must be passed as pointers.
c_float_p = ctypes.c_float * 1
arg0 = c_float_p(42.0)
arg1 = c_float_p(2.0)
res = c_float_p(-1.0)
execution_engine.invoke("add", arg0, arg1, res)
# CHECK: 42.0 + 2.0 = 44.0
log("{0} + {1} = {2}".format(arg0[0], arg1[0], res[0]))
run(testInvokeFloatAdd)
# Test callback
# CHECK-LABEL: TEST: testBasicCallback
def testBasicCallback():
# Define a callback function that takes a float and an integer and returns a float.
@ctypes.CFUNCTYPE(ctypes.c_float, ctypes.c_float, ctypes.c_int)
def callback(a, b):
return a / 2 + b / 2
with Context():
# The module just forwards to a runtime function known as "some_callback_into_python".
module = Module.parse(
r"""
func.func @add(%arg0: f32, %arg1: i32) -> f32 attributes { llvm.emit_c_interface } {
%resf = call @some_callback_into_python(%arg0, %arg1) : (f32, i32) -> (f32)
return %resf : f32
}
func.func private @some_callback_into_python(f32, i32) -> f32 attributes { llvm.emit_c_interface }
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.register_runtime("some_callback_into_python", callback)
# Prepare arguments: two input floats and one result.
# Arguments must be passed as pointers.
c_float_p = ctypes.c_float * 1
c_int_p = ctypes.c_int * 1
arg0 = c_float_p(42.0)
arg1 = c_int_p(2)
res = c_float_p(-1.0)
execution_engine.invoke("add", arg0, arg1, res)
# CHECK: 42.0 + 2 = 44.0
log("{0} + {1} = {2}".format(arg0[0], arg1[0], res[0] * 2))
run(testBasicCallback)
# Test callback with an unranked memref
# CHECK-LABEL: TEST: testUnrankedMemRefCallback
def testUnrankedMemRefCallback():
# Define a callback function that takes an unranked memref, converts it to a numpy array and prints it.
@ctypes.CFUNCTYPE(None, ctypes.POINTER(UnrankedMemRefDescriptor))
def callback(a):
arr = unranked_memref_to_numpy(a, np.float32)
log("Inside callback: ")
log(arr)
with Context():
# The module just forwards to a runtime function known as "some_callback_into_python".
module = Module.parse(
r"""
func.func @callback_memref(%arg0: memref<*xf32>) attributes { llvm.emit_c_interface } {
call @some_callback_into_python(%arg0) : (memref<*xf32>) -> ()
return
}
func.func private @some_callback_into_python(memref<*xf32>) -> () attributes { llvm.emit_c_interface }
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.register_runtime("some_callback_into_python", callback)
inp_arr = np.array([[1.0, 2.0], [3.0, 4.0]], np.float32)
# CHECK: Inside callback:
# CHECK{LITERAL}: [[1. 2.]
# CHECK{LITERAL}: [3. 4.]]
execution_engine.invoke(
"callback_memref",
ctypes.pointer(ctypes.pointer(get_unranked_memref_descriptor(inp_arr))),
)
inp_arr_1 = np.array([5, 6, 7], dtype=np.float32)
strided_arr = np.lib.stride_tricks.as_strided(
inp_arr_1, strides=(4, 0), shape=(3, 4)
)
# CHECK: Inside callback:
# CHECK{LITERAL}: [[5. 5. 5. 5.]
# CHECK{LITERAL}: [6. 6. 6. 6.]
# CHECK{LITERAL}: [7. 7. 7. 7.]]
execution_engine.invoke(
"callback_memref",
ctypes.pointer(ctypes.pointer(get_unranked_memref_descriptor(strided_arr))),
)
run(testUnrankedMemRefCallback)
# Test callback with a ranked memref.
# CHECK-LABEL: TEST: testRankedMemRefCallback
def testRankedMemRefCallback():
# Define a callback function that takes a ranked memref, converts it to a numpy array and prints it.
@ctypes.CFUNCTYPE(
None,
ctypes.POINTER(
make_nd_memref_descriptor(2, np.ctypeslib.as_ctypes_type(np.float32))
),
)
def callback(a):
arr = ranked_memref_to_numpy(a)
log("Inside Callback: ")
log(arr)
with Context():
# The module just forwards to a runtime function known as "some_callback_into_python".
module = Module.parse(
r"""
func.func @callback_memref(%arg0: memref<2x2xf32>) attributes { llvm.emit_c_interface } {
call @some_callback_into_python(%arg0) : (memref<2x2xf32>) -> ()
return
}
func.func private @some_callback_into_python(memref<2x2xf32>) -> () attributes { llvm.emit_c_interface }
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.register_runtime("some_callback_into_python", callback)
inp_arr = np.array([[1.0, 5.0], [6.0, 7.0]], np.float32)
# CHECK: Inside Callback:
# CHECK{LITERAL}: [[1. 5.]
# CHECK{LITERAL}: [6. 7.]]
execution_engine.invoke(
"callback_memref",
ctypes.pointer(ctypes.pointer(get_ranked_memref_descriptor(inp_arr))),
)
run(testRankedMemRefCallback)
# Test callback with a ranked memref with non-zero offset.
# CHECK-LABEL: TEST: testRankedMemRefWithOffsetCallback
def testRankedMemRefWithOffsetCallback():
# Define a callback function that takes a ranked memref, converts it to a numpy array and prints it.
@ctypes.CFUNCTYPE(
None,
ctypes.POINTER(
make_nd_memref_descriptor(1, np.ctypeslib.as_ctypes_type(np.float32))
),
)
def callback(a):
arr = ranked_memref_to_numpy(a)
log("Inside Callback: ")
log(arr)
with Context():
# The module takes a subview of the argument memref and calls the callback with it
module = Module.parse(
r"""
func.func @callback_memref(%arg0: memref<5xf32>) attributes {llvm.emit_c_interface} {
%base_buffer, %offset, %sizes, %strides = memref.extract_strided_metadata %arg0 : memref<5xf32> -> memref<f32>, index, index, index
%reinterpret_cast = memref.reinterpret_cast %base_buffer to offset: [3], sizes: [2], strides: [1] : memref<f32> to memref<2xf32, strided<[1], offset: 3>>
%cast = memref.cast %reinterpret_cast : memref<2xf32, strided<[1], offset: 3>> to memref<?xf32, strided<[?], offset: ?>>
call @some_callback_into_python(%cast) : (memref<?xf32, strided<[?], offset: ?>>) -> ()
return
}
func.func private @some_callback_into_python(memref<?xf32, strided<[?], offset: ?>>) attributes {llvm.emit_c_interface}
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.register_runtime("some_callback_into_python", callback)
inp_arr = np.array([0, 0, 0, 1, 2], np.float32)
# CHECK: Inside Callback:
# CHECK{LITERAL}: [1. 2.]
execution_engine.invoke(
"callback_memref",
ctypes.pointer(ctypes.pointer(get_ranked_memref_descriptor(inp_arr))),
)
run(testRankedMemRefWithOffsetCallback)
# Test callback with an unranked memref with non-zero offset
# CHECK-LABEL: TEST: testUnrankedMemRefWithOffsetCallback
def testUnrankedMemRefWithOffsetCallback():
# Define a callback function that takes an unranked memref, converts it to a numpy array and prints it.
@ctypes.CFUNCTYPE(None, ctypes.POINTER(UnrankedMemRefDescriptor))
def callback(a):
arr = unranked_memref_to_numpy(a, np.float32)
log("Inside callback: ")
log(arr)
with Context():
# The module takes a subview of the argument memref, casts it to an unranked memref and
# calls the callback with it.
module = Module.parse(
r"""
func.func @callback_memref(%arg0: memref<5xf32>) attributes {llvm.emit_c_interface} {
%base_buffer, %offset, %sizes, %strides = memref.extract_strided_metadata %arg0 : memref<5xf32> -> memref<f32>, index, index, index
%reinterpret_cast = memref.reinterpret_cast %base_buffer to offset: [3], sizes: [2], strides: [1] : memref<f32> to memref<2xf32, strided<[1], offset: 3>>
%cast = memref.cast %reinterpret_cast : memref<2xf32, strided<[1], offset: 3>> to memref<*xf32>
call @some_callback_into_python(%cast) : (memref<*xf32>) -> ()
return
}
func.func private @some_callback_into_python(memref<*xf32>) attributes {llvm.emit_c_interface}
"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.register_runtime("some_callback_into_python", callback)
inp_arr = np.array([1, 2, 3, 4, 5], np.float32)
# CHECK: Inside callback:
# CHECK{LITERAL}: [4. 5.]
execution_engine.invoke(
"callback_memref",
ctypes.pointer(ctypes.pointer(get_ranked_memref_descriptor(inp_arr))),
)
run(testUnrankedMemRefWithOffsetCallback)
# Test addition of two memrefs.
# CHECK-LABEL: TEST: testMemrefAdd
def testMemrefAdd():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xf32>, %arg1: memref<f32>, %arg2: memref<1xf32>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xf32>
%2 = memref.load %arg1[] : memref<f32>
%3 = arith.addf %1, %2 : f32
memref.store %3, %arg2[%0] : memref<1xf32>
return
}
} """
)
arg1 = np.array([32.5]).astype(np.float32)
arg2 = np.array(6).astype(np.float32)
res = np.array([0]).astype(np.float32)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
res_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(res))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke(
"main", arg1_memref_ptr, arg2_memref_ptr, res_memref_ptr
)
# CHECK: [32.5] + 6.0 = [38.5]
log("{0} + {1} = {2}".format(arg1, arg2, res))
run(testMemrefAdd)
# Test addition of two f16 memrefs
# CHECK-LABEL: TEST: testF16MemrefAdd
def testF16MemrefAdd():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xf16>,
%arg1: memref<1xf16>,
%arg2: memref<1xf16>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xf16>
%2 = memref.load %arg1[%0] : memref<1xf16>
%3 = arith.addf %1, %2 : f16
memref.store %3, %arg2[%0] : memref<1xf16>
return
}
} """
)
arg1 = np.array([11.0]).astype(np.float16)
arg2 = np.array([22.0]).astype(np.float16)
arg3 = np.array([0.0]).astype(np.float16)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
arg3_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg3))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke(
"main", arg1_memref_ptr, arg2_memref_ptr, arg3_memref_ptr
)
# CHECK: [11.] + [22.] = [33.]
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
# test to-numpy utility
# CHECK: [33.]
npout = ranked_memref_to_numpy(arg3_memref_ptr[0])
log(npout)
run(testF16MemrefAdd)
# Test addition of two complex memrefs
# CHECK-LABEL: TEST: testComplexMemrefAdd
def testComplexMemrefAdd():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xcomplex<f64>>,
%arg1: memref<1xcomplex<f64>>,
%arg2: memref<1xcomplex<f64>>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xcomplex<f64>>
%2 = memref.load %arg1[%0] : memref<1xcomplex<f64>>
%3 = complex.add %1, %2 : complex<f64>
memref.store %3, %arg2[%0] : memref<1xcomplex<f64>>
return
}
} """
)
arg1 = np.array([1.0 + 2.0j]).astype(np.complex128)
arg2 = np.array([3.0 + 4.0j]).astype(np.complex128)
arg3 = np.array([0.0 + 0.0j]).astype(np.complex128)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
arg3_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg3))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke(
"main", arg1_memref_ptr, arg2_memref_ptr, arg3_memref_ptr
)
# CHECK: [1.+2.j] + [3.+4.j] = [4.+6.j]
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
# test to-numpy utility
# CHECK: [4.+6.j]
npout = ranked_memref_to_numpy(arg3_memref_ptr[0])
log(npout)
run(testComplexMemrefAdd)
# Test addition of two complex unranked memrefs
# CHECK-LABEL: TEST: testComplexUnrankedMemrefAdd
def testComplexUnrankedMemrefAdd():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<*xcomplex<f32>>,
%arg1: memref<*xcomplex<f32>>,
%arg2: memref<*xcomplex<f32>>) attributes { llvm.emit_c_interface } {
%A = memref.cast %arg0 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
%B = memref.cast %arg1 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
%C = memref.cast %arg2 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
%0 = arith.constant 0 : index
%1 = memref.load %A[%0] : memref<1xcomplex<f32>>
%2 = memref.load %B[%0] : memref<1xcomplex<f32>>
%3 = complex.add %1, %2 : complex<f32>
memref.store %3, %C[%0] : memref<1xcomplex<f32>>
return
}
} """
)
arg1 = np.array([5.0 + 6.0j]).astype(np.complex64)
arg2 = np.array([7.0 + 8.0j]).astype(np.complex64)
arg3 = np.array([0.0 + 0.0j]).astype(np.complex64)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_unranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_unranked_memref_descriptor(arg2))
)
arg3_memref_ptr = ctypes.pointer(
ctypes.pointer(get_unranked_memref_descriptor(arg3))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke(
"main", arg1_memref_ptr, arg2_memref_ptr, arg3_memref_ptr
)
# CHECK: [5.+6.j] + [7.+8.j] = [12.+14.j]
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
# test to-numpy utility
# CHECK: [12.+14.j]
npout = unranked_memref_to_numpy(arg3_memref_ptr[0], np.dtype(np.complex64))
log(npout)
run(testComplexUnrankedMemrefAdd)
# Test bf16 memrefs
# CHECK-LABEL: TEST: testBF16Memref
def testBF16Memref():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xbf16>,
%arg1: memref<1xbf16>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xbf16>
memref.store %1, %arg1[%0] : memref<1xbf16>
return
}
} """
)
arg1 = np.array([0.5]).astype(bfloat16)
arg2 = np.array([0.0]).astype(bfloat16)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke("main", arg1_memref_ptr, arg2_memref_ptr)
# test to-numpy utility
# CHECK: [0.5]
npout = ranked_memref_to_numpy(arg2_memref_ptr[0])
log(npout)
run(testBF16Memref)
# Test f8E5M2 memrefs
# CHECK-LABEL: TEST: testF8E5M2Memref
def testF8E5M2Memref():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xf8E5M2>,
%arg1: memref<1xf8E5M2>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xf8E5M2>
memref.store %1, %arg1[%0] : memref<1xf8E5M2>
return
}
} """
)
arg1 = np.array([0.5]).astype(float8_e5m2)
arg2 = np.array([0.0]).astype(float8_e5m2)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke("main", arg1_memref_ptr, arg2_memref_ptr)
# test to-numpy utility
# CHECK: [0.5]
npout = ranked_memref_to_numpy(arg2_memref_ptr[0])
log(npout)
run(testF8E5M2Memref)
# Test addition of two 2d_memref
# CHECK-LABEL: TEST: testDynamicMemrefAdd2D
def testDynamicMemrefAdd2D():
with Context():
module = Module.parse(
"""
module {
func.func @memref_add_2d(%arg0: memref<2x2xf32>, %arg1: memref<?x?xf32>, %arg2: memref<2x2xf32>) attributes {llvm.emit_c_interface} {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c1 = arith.constant 1 : index
cf.br ^bb1(%c0 : index)
^bb1(%0: index): // 2 preds: ^bb0, ^bb5
%1 = arith.cmpi slt, %0, %c2 : index
cf.cond_br %1, ^bb2, ^bb6
^bb2: // pred: ^bb1
%c0_0 = arith.constant 0 : index
%c2_1 = arith.constant 2 : index
%c1_2 = arith.constant 1 : index
cf.br ^bb3(%c0_0 : index)
^bb3(%2: index): // 2 preds: ^bb2, ^bb4
%3 = arith.cmpi slt, %2, %c2_1 : index
cf.cond_br %3, ^bb4, ^bb5
^bb4: // pred: ^bb3
%4 = memref.load %arg0[%0, %2] : memref<2x2xf32>
%5 = memref.load %arg1[%0, %2] : memref<?x?xf32>
%6 = arith.addf %4, %5 : f32
memref.store %6, %arg2[%0, %2] : memref<2x2xf32>
%7 = arith.addi %2, %c1_2 : index
cf.br ^bb3(%7 : index)
^bb5: // pred: ^bb3
%8 = arith.addi %0, %c1 : index
cf.br ^bb1(%8 : index)
^bb6: // pred: ^bb1
return
}
}
"""
)
arg1 = np.random.randn(2, 2).astype(np.float32)
arg2 = np.random.randn(2, 2).astype(np.float32)
res = np.random.randn(2, 2).astype(np.float32)
arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)
res_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(res))
)
execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke(
"memref_add_2d", arg1_memref_ptr, arg2_memref_ptr, res_memref_ptr
)
# CHECK: True
log(np.allclose(arg1 + arg2, res))
run(testDynamicMemrefAdd2D)
# Test loading of shared libraries.
# CHECK-LABEL: TEST: testSharedLibLoad
def testSharedLibLoad():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xf32>) attributes { llvm.emit_c_interface } {
%c0 = arith.constant 0 : index
%cst42 = arith.constant 42.0 : f32
memref.store %cst42, %arg0[%c0] : memref<1xf32>
%u_memref = memref.cast %arg0 : memref<1xf32> to memref<*xf32>
call @printMemrefF32(%u_memref) : (memref<*xf32>) -> ()
return
}
func.func private @printMemrefF32(memref<*xf32>) attributes { llvm.emit_c_interface }
} """
)
arg0 = np.array([0.0]).astype(np.float32)
arg0_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg0))
)
if sys.platform == "win32":
shared_libs = [
"../../../../bin/mlir_runner_utils.dll",
"../../../../bin/mlir_c_runner_utils.dll",
]
elif sys.platform == "darwin":
shared_libs = [
"../../../../lib/libmlir_runner_utils.dylib",
"../../../../lib/libmlir_c_runner_utils.dylib",
]
else:
shared_libs = [
"../../../../lib/libmlir_runner_utils.so",
"../../../../lib/libmlir_c_runner_utils.so",
]
execution_engine = ExecutionEngine(
lowerToLLVM(module), opt_level=3, shared_libs=shared_libs
)
execution_engine.invoke("main", arg0_memref_ptr)
# CHECK: Unranked Memref
# CHECK-NEXT: [42]
run(testSharedLibLoad)
# Test that nano time clock is available.
# CHECK-LABEL: TEST: testNanoTime
def testNanoTime():
with Context():
module = Module.parse(
"""
module {
func.func @main() attributes { llvm.emit_c_interface } {
%now = call @nanoTime() : () -> i64
%memref = memref.alloca() : memref<1xi64>
%c0 = arith.constant 0 : index
memref.store %now, %memref[%c0] : memref<1xi64>
%u_memref = memref.cast %memref : memref<1xi64> to memref<*xi64>
call @printMemrefI64(%u_memref) : (memref<*xi64>) -> ()
return
}
func.func private @nanoTime() -> i64 attributes { llvm.emit_c_interface }
func.func private @printMemrefI64(memref<*xi64>) attributes { llvm.emit_c_interface }
}"""
)
if sys.platform == "win32":
shared_libs = [
"../../../../bin/mlir_runner_utils.dll",
"../../../../bin/mlir_c_runner_utils.dll",
]
else:
shared_libs = [
"../../../../lib/libmlir_runner_utils.so",
"../../../../lib/libmlir_c_runner_utils.so",
]
execution_engine = ExecutionEngine(
lowerToLLVM(module), opt_level=3, shared_libs=shared_libs
)
execution_engine.invoke("main")
# CHECK: Unranked Memref
# CHECK: [{{.*}}]
run(testNanoTime)
# Test that nano time clock is available.
# CHECK-LABEL: TEST: testDumpToObjectFile
def testDumpToObjectFile():
fd, object_path = tempfile.mkstemp(suffix=".o")
try:
with Context():
module = Module.parse(
"""
module {
func.func @main() attributes { llvm.emit_c_interface } {
return
}
}"""
)
execution_engine = ExecutionEngine(lowerToLLVM(module), opt_level=3)
# CHECK: Object file exists: True
print(f"Object file exists: {os.path.exists(object_path)}")
# CHECK: Object file is empty: True
print(f"Object file is empty: {os.path.getsize(object_path) == 0}")
execution_engine.dump_to_object_file(object_path)
# CHECK: Object file exists: True
print(f"Object file exists: {os.path.exists(object_path)}")
# CHECK: Object file is empty: False
print(f"Object file is empty: {os.path.getsize(object_path) == 0}")
finally:
os.close(fd)
os.remove(object_path)
run(testDumpToObjectFile)