from enum import Enum
import functools, sys, ctypes, os, errno
import numpy as np
from functools import partialmethod
from mlir import ir
from mlir.dialects import arith, func, gpu, memref, nvgpu, scf, nvvm
from mlir.extras import types as T
from mlir import runtime as rt
from tools import nvgpucompiler
MLIR_DYNAMIC = -9223372036854775808
def const(value: int, ty=None):
ty = T.index() if ty is None else ty
if isinstance(value, ir.Value) and (
value.type.isinstance(value.type) or T.bool().isinstance(value.type)
):
return value
return arith.constant(ty, value)
def get_type_size(ty):
if ir.MemRefType.isinstance(ty):
size = get_type_size(ty.element_type)
for sz in ty.shape:
size *= sz
return size
if ir.FloatType.isinstance(ty):
return ir.FloatType(ty).width // 8
if ir.IntegerType.isinstance(ty):
return ir.IntegerType(ty).width // 8
raise NotImplementedError(ty)
def get_mlir_func_obj_ty(inputArgs):
args = []
c_int_p = ctypes.c_int * 1
c_float_p = ctypes.c_float * 1
c_bool_p = ctypes.c_bool * 1
for arg in inputArgs:
if isinstance(arg, bool):
args.append(c_bool_p(arg))
elif isinstance(arg, int):
args.append(c_int_p(arg))
elif isinstance(arg, float):
args.append(c_float_p(arg))
elif isinstance(arg, np.ndarray):
args.append(
ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(arg)))
)
else:
raise NotImplementedError(arg)
return args
class Mbarriers:
def __init__(self, number_of_barriers=1):
self.mbar_ty = ir.Type.parse(
"!nvgpu.mbarrier.group<memorySpace=#gpu.address_space<workgroup>, num_barriers = "
+ str(number_of_barriers)
+ ">"
)
self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)
self.number_of_barriers = number_of_barriers
def __getitem__(self, key):
self.id_op = const(key)
return self
def init(self, count: int, predicate=None):
count_op = const(count)
if predicate is None:
nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op)
else:
nvgpu.mbarrier_init(
self.mbar_group_op, count_op, self.id_op, predicate=predicate
)
def arrive(self, txcount: int = 0, predicate=None):
if txcount != 0:
txcount_op = const(txcount)
nvgpu.mbarrier_arrive_expect_tx(
self.mbar_group_op, txcount_op, self.id_op, predicate=predicate
)
else:
nvgpu.mbarrier_arrive(
ir.Type.parse("!nvgpu.mbarrier.token"), self.mbar_group_op, self.id_op
)
def try_wait(self, phase: bool = False, ticks: int = 10000000):
ticks_op = const(ticks)
phase_op = const(phase, T.bool())
nvgpu.MBarrierTryWaitParityOp(
self.mbar_group_op,
phase_op,
ticks_op,
mbarId=self.id_op,
)
class TMA:
"""A class that builds a TMA descriptor."""
def __init__(
self,
tma_box_shape,
memref_ty,
swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
oob=nvgpu.TensorMapOOBKind.OOB_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
):
self.swizzle = swizzle # mlir.nvgpu.TensorMapSwizzleKind
self.l2promo = l2promo # mlir.nvgpu.TensorMapL2PromoKind
self.oob = oob # mlir.nvgpu.TensorMapOOBKind
self.interleave = interleave # mlir.nvgpu.TensorMapInterleaveKind
self.tma_box_shape = tma_box_shape
self.memref_ty = memref_ty # MemRefType
self.tma_memref = ir.MemRefType.get(tma_box_shape, memref_ty.element_type)
@property
def tensormap_descriptor_ty(self):
"""Returns a tensormap descriptor type."""
tensorMemrefType = ir.MemRefType.get(
self.tma_box_shape,
self.memref_ty.element_type,
memory_space=ir.Attribute.parse("3"),
)
return nvgpu.TensorMapDescriptorType.get(
tensorMemrefType,
self.swizzle,
self.l2promo,
self.oob,
self.interleave,
)
def create_descriptor(self, device_ptr):
tma_descriptor_ty = self.tensormap_descriptor_ty
device_unranked_memref = memref.CastOp(
ir.UnrankedMemRefType.get(
self.memref_ty.element_type, self.memref_ty.memory_space
),
device_ptr,
)
self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(
tma_descriptor_ty, device_unranked_memref, map(const, self.tma_box_shape)
)
return self.tma_descriptor.result
def prefetch(self, predicate=None):
nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)
def load(self, dest, mbarrier: Mbarriers, coords=[0], predicate=None):
nvgpu.TmaAsyncLoadOp(
dest,
mbarrier.mbar_group_op,
self.tma_descriptor,
coordinates=map(const, coords),
mbarId=mbarrier.id_op,
predicate=predicate,
)
WARP_GROUP_SIZE = 128 # Number of threads in a warpgroup
class Warpgroup:
def __init__(self, primary_thread, register_size):
assert (primary_thread % WARP_GROUP_SIZE) == 0
tidx = gpu.thread_id(gpu.Dimension.x)
self.primary_thread = primary_thread
self.register_size = register_size
self.is_wg_primary = (tidx % WARP_GROUP_SIZE) == 0
self.wg_id = tidx / WARP_GROUP_SIZE
self.is_me = self.wg_id == (primary_thread // WARP_GROUP_SIZE)
def __enter__(self):
if_op = scf.IfOp(self.is_me)
self.ipoint_op = ir.InsertionPoint(if_op.then_block)
self.ipoint_op.__enter__()
if self.register_size < 64:
nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.decrease)
else:
nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.increase)
def __exit__(self, exc_type, exc_value, traceback):
scf.yield_([])
self.ipoint_op.__exit__(exc_type, exc_value, traceback)
return True
class WGMMAType(Enum):
Accumulator = 1
Descriptor = 2
class WGMMAMatrix:
def __init__(
self,
matrix_type: WGMMAType,
shape: list = None,
desc: TMA = None,
smem=None,
ty=None,
acc_op=None,
):
if acc_op is None:
self.M = shape[0]
self.N = shape[1]
self.ty = ty
self.matrix_type = matrix_type
self.desc = desc
self.smem = smem
if matrix_type is WGMMAType.Accumulator:
self.acc_op = nvgpu.warpgroup_mma_init_accumulator(self.acc_ty)
elif acc_op:
self.acc_op = acc_op
self.matrix_type = WGMMAType.Accumulator
@property
def acc_ty(self):
parse_str = f"!nvgpu.warpgroup.accumulator<fragmented=vector<{self.M}x{self.N}x{self.ty}>>"
return ir.Type.parse(parse_str)
@property
def wgmma_ty(self):
parse_str = f"!nvgpu.warpgroup.descriptor<tensor=memref<{self.M}x{self.N}x{self.desc.memref_ty.element_type}, #gpu.address_space<workgroup>>>"
return ir.Type.parse(parse_str)
def store_accumulator(self, dest):
assert self.matrix_type == WGMMAType.Accumulator
nvgpu.warpgroup_mma_store(self.acc_op, dest)
def update_smem(self, smem):
self.smem = smem
def update_accumulator(self, acc_op):
self.acc_op = acc_op
def __matmul__(self, rhs):
lhs = nvgpu.warpgroup_generate_descriptor(
self.wgmma_ty, self.smem, self.desc.tma_descriptor
)
rhs = nvgpu.warpgroup_generate_descriptor(
rhs.wgmma_ty, rhs.smem, rhs.desc.tma_descriptor
)
return [lhs, rhs]
def __iadd__(self, matmulResult):
lhs = matmulResult[0]
rhs = matmulResult[1]
acc_op = nvgpu.WarpgroupMmaOp(
self.acc_op.type, lhs, rhs, self.acc_op, transposeB=True
)
return WGMMAMatrix(WGMMAType.Accumulator, acc_op=acc_op)
def get_dynamic_shared_memory(shape=None, ty=None, offset: int = 0):
smem_space_str = "#gpu.address_space<workgroup>"
smem_space = ir.Attribute.parse(smem_space_str)
dynamic_smem = gpu.dynamic_shared_memory(
ir.MemRefType.get((MLIR_DYNAMIC,), T.i8(), memory_space=smem_space)
)
if shape is None:
return dynamic_smem
memref_ty = ir.MemRefType.get(shape, ty, memory_space=smem_space)
return memref.view(
ir.MemRefType.get(
memref_ty.shape, memref_ty.element_type, memory_space=smem_space
),
dynamic_smem,
const(offset),
[],
)
def get_mlir_ty(arg):
def get_mlir_ty_from_np(dtype):
if dtype == np.float16:
return T.f16()
if dtype == np.float32:
return T.f32()
if dtype == np.float64:
return T.f64()
if dtype == np.int32:
return T.i32()
if dtype == np.int64:
return T.i64()
raise NotImplementedError(dtype)
if isinstance(arg, bool):
return T.bool()
elif isinstance(arg, int):
return T.index()
elif isinstance(arg, float):
return T.f32()
elif isinstance(arg, np.ndarray):
descriptor = rt.get_ranked_memref_descriptor(arg)
dtype = get_mlir_ty_from_np(arg.dtype)
shape = descriptor.shape
return memref.MemRefType.get(shape, dtype)
raise NotImplementedError(arg)
class NVDSL:
@staticmethod
def mlir_gpu_launch(grid=(1, 1, 1), block=(1, 1, 1), smem=0):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
launch_op = gpu.LaunchOp(
None,
[],
*map(const, grid),
*map(const, block),
dynamicSharedMemorySize=arith.constant(T.i32(), smem),
)
launch_op.body.blocks.append(*([T.index()] * 12))
with ir.InsertionPoint(launch_op.body.blocks[0]):
result = func(*args, **kwargs)
gpu.terminator()
return result
return wrapper
return decorator
@staticmethod
def mlir_func(funcBody):
@functools.wraps(funcBody)
def wrapper(*args, **kwargs):
function_name = funcBody.__name__
def saveIR(module):
"""Save generated IR"""
if True: # self.saveIR:
# print(mlir_nvgpu_module)
original_stdout = sys.stdout
with open("nvdsl.mlir", "w") as f:
sys.stdout = f
print(module)
sys.stdout = original_stdout
def _binary_op(lhs, rhs, op: str, predAtt="") -> "ArithValue":
"""Generate MLIR's Arith dialects binary operations."""
rhs = const(rhs)
if arith._is_float_type(lhs.type) and arith._is_float_type(rhs.type):
op += "F"
if op.startswith("Cmp"):
predicateAttr = getattr(arith, f"CmpFPredicate").__dict__[
predAtt
]
elif arith._is_integer_like_type(
lhs.type
) and arith._is_integer_like_type(lhs.type):
if op == "Div" or op == "Rem":
op += "U"
op += "I"
if op.startswith("Cmp"):
predicateAttr = getattr(arith, f"CmpIPredicate").__dict__[
predAtt
]
else:
raise NotImplementedError(
f"Unsupported '{op}' operands: {lhs}, {rhs}"
)
if op.startswith("Cmp"):
op = getattr(arith, f"{op}Op")
return op(predicateAttr, lhs, rhs).result
else:
op = getattr(arith, f"{op}Op")
return op(lhs, rhs).result
@ir.register_value_caster(ir.IndexType.static_typeid)
@ir.register_value_caster(ir.F32Type.static_typeid)
@ir.register_value_caster(ir.F16Type.static_typeid)
@ir.register_value_caster(ir.F64Type.static_typeid)
@ir.register_value_caster(ir.IntegerType.static_typeid)
class ArithValue(ir.Value):
"""Overloads operators for MLIR's Arith dialects binary operations."""
def __init__(self, v):
super().__init__(v)
__add__ = partialmethod(_binary_op, op="Add")
__sub__ = partialmethod(_binary_op, op="Sub")
__mul__ = partialmethod(_binary_op, op="Mul")
__truediv__ = partialmethod(_binary_op, op="Div")
__mod__ = partialmethod(_binary_op, op="Rem")
__xor__ = partialmethod(_binary_op, op="XOr")
__lt__ = partialmethod(_binary_op, op="Cmp", predAtt="ult")
__le__ = partialmethod(_binary_op, op="Cmp", predAtt="ule")
__eq__ = partialmethod(_binary_op, op="Cmp", predAtt="eq")
__ne__ = partialmethod(_binary_op, op="Cmp", predAtt="ne")
__gt__ = partialmethod(_binary_op, op="Cmp", predAtt="ugt")
__ge__ = partialmethod(_binary_op, op="Cmp", predAtt="uge")
__and__ = partialmethod(_binary_op, op="And")
__or__ = partialmethod(_binary_op, op="Or")
def __str__(self):
return (
super()
.__str__()
.replace(ir.Value.__name__, ArithValue.__name__)
)
# Generate MLIR Context and start generating IR
with ir.Context(), ir.Location.unknown():
types = []
for arg in args:
types.append(get_mlir_ty(arg))
# Build IR
module = ir.Module.create()
with ir.InsertionPoint(module.body):
fop = func.FuncOp(function_name, (types, []))
fop.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
with ir.InsertionPoint(fop.add_entry_block()):
fargs = []
for i, a in enumerate(types):
fargs.append(fop.arguments[i])
# Call user function body
result = funcBody(*fargs, **kwargs)
func.ReturnOp([])
# Save IR in a file
# saveIR(module)
# Verify the module
module.operation.verify()
# Compile and JIT MLIR module
options = f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3"
support_lib = os.getenv("SUPPORT_LIB")
if not os.path.exists(support_lib):
raise FileNotFoundError(
errno.ENOENT, os.strerror(errno.ENOENT), support_lib
)
compiler = nvgpucompiler.NvgpuCompiler(
options, opt_level=3, shared_libs=[support_lib]
)
engine = compiler.compile_and_jit(module)
# Convert input arguments to MLIR arguments
newArgs = get_mlir_func_obj_ty(args)
# Run the compiled program
engine.invoke(function_name, *newArgs)
return result
return wrapper